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a b s t r a c t

An alternative account of human concept learning based on an invariance measure of the categorical
stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural
complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or
size. To do this we introduce a mathematical framework based on the notion of a Boolean differential
operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the
category in respect to its dimensions. Using this framework, we propose that the structural complexity
of a Boolean category is indirectly proportional to its degree of categorical invariance and directly
proportional to its cardinality or size. Consequently, complexity and invariance notions are formally
unified to account for concept learning difficulty. Beyond developing the above unifying mathematical
framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of
the SHJ [Shepard, R. N., Hovland, C. L., & Jenkins, H.M. (1961). Learning andmemorization of classifications.
Psychological Monographs: General and Applied, 75(13), 1–42] Boolean category types consisting of three
binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the
degree of learning difficulty of a large class of categories (in particular, the 41 category types studied
by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,
407, 630–633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of
categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g.,
cognitively tractable).

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Invariance

Invariance principles are ubiquitous in the physical sciences.
A simple example of one such principle in physics involves the
lines of magnetic force. These lines form closed loops that have the
property that for any volume enclosing them the number of lines
entering the volume is equal to the number of lines leaving the
volume. This property is sometimes referred to as the property of
incompressibility and it remains regardless of theway thatwe alter
the space defined by the volume. That is, the property is invariant
in respect to deformations of the space such as stretching, twisting,
cutting, or bending.
Another example of invariance-based principles in physics

involves both the theory of Special Relativity and General
Relativity. Both theories aim to identify under what space–time
coordinate transformations the laws of physics remain invariant.
Lastly, topology, one of the most vital fields of mathematics,
is roughly defined as the study of those properties of figures
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that are invariant under continuous transformations that have a
continuous inverse.
In a similar spirit, cognitive scientists have resorted to

invariance principles in order to explain a variety of cognitive
phenomena such asmemory, perception, and concept learning. For
example, in pioneering work, Garner (1963, 1970) and Garner and
Felfoldy (1970) developed the idea that the degree of invariance
of a form determines how good a pattern is perceived to be.
More specifically, Garner (1974) explores the relationship between
what he calls ‘‘goodness of pattern’’ to the concept of information
redundancy in the form of regularities in the stimulus structure.
Under this approach, structural regularities are characterized in

terms of the size of mutually exclusive subsets of the set of visual
stimuli. These subsets are generated by subjects asked to group
together visual patterns under a similarity criterion. A good model
of the generated subsets is to regard them as equivalence classes of
patterns that can be generated from each other by a combination
of rotations and reflections. Garner (1963) showed that the size of
these equivalence classes is a good predictor of goodness of pattern
judgments: for example, the smaller the size of a subset of visual
patterns that are judged similar (i.e., the greater its redundancy and
regularity), the higher the degree of pattern goodness that will be
assigned to a visual pattern within the subset.
Like Garner, Leyton (1992) in his book ‘‘Symmetry, Causality,

andMind’’ uses invariance principles to explain cognitive phenom-
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ena. However, this time the phenomena in question are memory
processes. Leyton posits that themind assigns to any shape a causal
history explaining how the shapewas formed. By examining shape
in terms of its inherent symmetries, he argues that symmetry is a
key component to cognitive processing. Thus, he is able to reduce
aspects of visual perception to symmetry or invariance principles.
In tune with this idea, Imai (1977) and more recently

Hahn, Chater, and Richardson (2003) proposed that similarity
judgments may be determined by transformational distance.
More specifically, the degree of similarity between two objects
is characterized by these researchers in terms of the number
of transformations necessary to convert one into the other.
Hahn et al. (2003) give experimental evidence that seems to
show that transformational distance strongly influences similarity
judgments. Interestingly, unlike the previously discussed theories
of invariance, rather than ascertaining underwhat transformations
an object’s structure remains invariant, Hahn and associates
ask how many (and what type of) relevant transformations are
necessary to achieve a kind of deterministic variance.
In our theory, we follow this tradition of using invariance as an

explanatory principle for cognition, but we do so from an entirely
different perspective and aim. We wish to introduce an elegant
and natural mathematical framework for the study of invariance
in human concept learning in terms of the languages of logic and
analysis. This approach is rather natural since, as we shall see, the
concepts we will focus on (i.e., Boolean concepts) are concepts
learned from categories that are plainly definable in terms of
logical rules or logical expressions from Boolean algebra in the
first place. We focus on Boolean categories since these are the
simplest nontrivial cases we can study. In fact, Boolean categories
also play an important role in the landmark theories of human
concept learning that we shall use as benchmarks for our own.
Two of these landmark theories, the exemplar theory (Medin

& Schaffer, 1978; Nosofsky, 1986) and prototype theory (Rosch &
Mervis, 1975), may be characterized as mental process theories
based on similarity assessment representations. Under prototype
accounts of human concept learning concepts are prototypical
representations or central tendencies of the exemplars associated
with the concept. A novel stimulus is then classified on the basis of
its similarity to the prototype. On the other hand, under exemplar
accounts of concept learning (Medin & Schaffer, 1978; Nosofsky,
1986), a novel stimulus is classified by determining how similar it
is to the stored exemplars of a category and those of a contrasting
category.
For example, Nosofsky’s Generalized Context Model (GCM)

(1984, 1986) is a formal generalization of the exemplar theory of
Medin and Schaffer (1978). The model owes a great deal to the
theory of multidimensional scaling (Shepard, 1962, 1974) and to
Luce’s choice probability theory (1959). The GCM is based on three
key ideas. The first of these is the characterization of subjective
similarity as an inverse exponential function of the Euclidean
distance between stimuli in some psychological space as described
by Shepard’s universal law of generalization (Shepard, 1987).
The second is Luce’s classic Similarity Choice Model (SCM)

for predicting identification responses (Luce, 1963). In Luce’s
model, the probability that a stimulus i elicits a response j in an
identification experiment is given by

p(rj|si) =
bjs(i, j)
n∑
k=1
bks(i, k)

(1.1)

where bj and bk are parameters indicating response biases, s(i, j) is
a similarity measure between the stimuli i and j, and the index k in
the denominator ranges over the set of stimuli that are eligible as
responses in the experiment.
The third key idea in the GCM is the inclusion of a parameter
wi representing the selective attention allocated to dimension i.
The distance between stimuli in some psychological space is then
defined as d(x, y) =

∑
iwi · |xi − yi| for separable (selectively

attendable) dimensions. In the GCM the probability that category
C will be selected given stimulus y is

p(C |y) =
bC ·

∑
x∈C
FCx · s(x, y)∑

α

[
bα ·

∑
k∈α
Fαk · s(k, y)

] . (1.2)

This is the ratio between: (1) aggregate similarities of the stimulus
y to the exemplars in C , and (2) the sum of the aggregate
similarities of the stimulus y to the members of the contrasting
categories α. The parameter bα is the response bias for category α
and Fαk is a parameter indicating the frequency of occurrences of
the exemplar k in category α (Kruschke, 2006). Thus, the processes
of similarity, attention, and choice are combined to explain and
predict the likelihood of a correct categorization decision, making
the GCM a probability-based process account of classification
behavior.
This and other exemplar accounts have great intuitive and

parsimonious appeal and have led to connectionist models that
have been successful at quantitatively predicting degrees of
concept learning difficulty. One of the most successful of these
models is ALCOVE (Kruschke, 1992)—a connectionist model of
exemplar-based categorization inspired by Nosofsky’s Generalized
Context Model (1986). The dynamic adaptive nature of these
process theories stands in sharp contrast to the ‘‘static’’ structural
accounts of human concept learning discussed above: these aim
to determine the degree of concept learning difficulty based solely
on the structural properties of the categorical stimulus (Garner,
1974) and do not make assumptions about what is possibly taking
place in the humanmind before categorical decisions aremade and
while concepts are being learned or formed.
Indeed, in our analytico–structural account of Boolean concept

learning, we will introduce a measure of the structural charac-
teristics of the stimulus that are good predictors of the degree of
learning difficulty experienced when learning it. As discussed, our
stimulus-drivenmodeling paradigm is not very different from that
of psychophysics, which examines what Gibson (1966) refers to as
the energetic properties of the stimulus (its physical properties) as
opposed to its informational properties as reflected in its structure.

1.2. Cognitive complexity

Most structural accounts do not have at their core invariance
notions. Ever since the seminal work ofMiller (1956)which sought
to identify the limits of human short-termmemory capacity, there
has been much interest on how the complexity of a task or of
a stimulus may influence our ability to perceive it, memorize it,
learn it, and make decisions and inferences about it. We refer
to this property as the cognitive complexity of the stimulus. An
example of this idea in applied domains is found in the work
of Wang and Shao (2003) on program design. These researchers
proposed a measure of software code complexity based on
cognitiveweights. Cognitiveweights are numbers representing the
degree of difficulty for comprehending particular types of basic
control structures in programming code. These weights combine
to give an overall sense of the clarity, effectiveness, and correctness
of the software.
Accordingly, the idea of using complexity measures for

modeling cognition has been reexamined in the work of Feldman
(2000) and Vigo (2006). Feldman (2000) proposes a structural
model based on a measure of complexity. The complexity of a
Boolean category is defined by Feldman as the length of the
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shortest propositional formula that is logically equivalent to the
original full DNF formula describing the category type.
Under this approach lie the common suppositions that:

(1) there are structural properties intrinsic to a stimulus that can
be used to describe how complicated the stimulus is, and (2) that
such properties are good predictors of the learning difficulty of
the stimulus. Our own model will offer an alternative notion of
complexity that we shall refer to as ‘‘structural complexity’’ and
that will be based on invariance principles.
More specifically, in the theory we introduce in Sections 3–5

the structural complexity of a categorical stimulus will be a
function of both its inherent degree of invariance and its cardinality
(size). This definition in turn will be used to predict the degree
of learning difficulty associated with each categorical stimulus. In
general, our approach may be viewed as a synthesis of invariance
and complexity notions. Thus, on average, categories with the
greatest degree of categorical invariance – and hence, a relative
lowest degree of structural complexity – should be easiest to learn.
This is because invariance tells us the way in which objects in a
category are interrelated at a higher level.
We shall discuss Feldman’s m-complexity model (i.e.,

minimization-based complexity model) in detail in Section 3 in
order to bring to the fore some of the problems that our alterna-
tive invariance-based model of complexity will be able to solve.
We shall also discuss briefly a more recent structural account by
Feldman (2006) based on the idea of the spectral decompositions
of Boolean categories.

1.3. Invariance, complexity, and process

Although the structural properties of a Boolean category may
help us predict its degree of learning difficulty, we are left with
the question as to how these structural properties influence
learnability. In other words, what is the connection between
the concept learning process and the structural properties of
the categorical stimulus? To answer this question we propose
a companion computational theory hypothesis to our structural
account. In Sections 4 and 5, as we present our formal model, we
shall fill in the missing details.
Under our hypothesis, it is invariance that determines the

degree of perceived simplicity of the stimulus and it is excessive
demands on working memory capacity during the invariance
detection process that determine the degree of subjective learning
difficulty. Intuitively, thismakes sense. Themore pattern perceived
in a structure, the simpler it seems to be: the more tractable.
Invariance plays the role of simplicity while category size plays
the role of raw complexity in our model. However, these two
properties act together in synergy to determine the overall
structural complexity of a category.
In contrast, Garner (1974) believes that it is subset size (see

the discussion above on Garner), rather than symmetry that is
the pertinent factor in determining cognitive performance. He
writes on page 17 (Garner, 1974): ‘‘If symmetry is so directly
related to pattern goodness, why don’t we just say that symmetry
is the pertinent factor, rather than subset size? The answer lies
partly in the fact that symmetry is a sufficient but not necessary
condition for producing small subset sizes, even with these simple
stimuli. Symmetry is simply one way in which the stimulus may
be manipulated to produce variations in subset size, but its mode
of action is via subset size rather than by symmetry per se.’’
This conclusion by Garner may have been the result of

the absence of a function in his formal framework that could
meaningfully measure the degree of total invariance of each
stimulus independent of the equivalence class or subset it is
grouped in. With such a measure at our disposal, we believe that
symmetry information is necessary to make predictions about
goodness of pattern judgments. Notwithstanding, it will be shown
that in respect to concept learning, both the degree of symmetry
and category size are intimately tied up and play an important
and synergistic role in determining structural complexity and
ultimately concept learning difficulty.
To derive an invariance measure of the stimulus we introduce

a mathematical framework based in part on what is known
in Boolean circuit theory as the Boolean differential operator.
The framework introduces the notion of the logical manifold
operator of a Boolean category in order to: (1) generate the
degrees of invariance or symmetry of a category in respect to its
dimensions, and (2) generate the space of degrees of symmetry
of a Boolean category family (we shall describe these ideas in
detail in Section 3). Consequently, it is proposed that the category
types within a category family can be naturally ordered by both
the maximal invariance value and the frequency of the maximal
invariance value of their logical manifolds. This ordering points
the way toward a method for meaningfully measuring degrees of
‘‘global’’ invariance.
The method involves measuring the Euclidean distance of the

logical manifolds of the category types from a zero origin. This
is significant since distance metrics have proven unsuccessful
in making concept learning predictions in discrete feature
domains. For example, Lee and Navarro (2002) found that ALCOVE
(Kruschke, 1992), perhaps the most successful exemplar model,
could not fit discrete-feature categories well without a metric
sensitive to the featural structure of the space: as will be seen, in
our approach, invariance is defined in terms of an ordinary metric
that, by virtue of being applied to points in invariance space, is
sensitive to feature structure.
Although our model is structural in nature, we can reasonably

speculate whether the mathematical operators that compute the
invariance of the categorical stimulus may also be construed as
functional descriptions of an information processing system, and
therefore as the basis for a theory of computation. To understand
this point, it is helpful to considerMarr’s three levels of description
of an information processing system (Marr, 1982; Poggio, 1981):
the computational or behavioral level of description (e.g., the
functional description or the description of what the device does),
the algorithmic and representational level of description (e.g., the
description of the representation of acquired information and of
the algorithms defined over such representation), and the physical
implementation level of description (i.e., the description of the
physical device that is capable of actualizing what is described by
the first two levels).
More specifically, in Marr’s work on vision, the computational

level of description specifies the mathematical operations that
facilitate the goal of a theory of vision: namely, to construct a
three-dimensional representation of distal stimuli on the basis of
inputs to the retina. For example, Marr introduces a differential
operator (i.e., the Laplacian) capable of detecting intensity changes
in light energy at an initial stage of processing as the basis of his
computational level of description (Poggio, 1981).
Likewise, if we take our conceptual system’s ultimate goal to

be that of representing multiplicity of objects holistically, then the
mathematical operations that determine the degree of invariance
of a categorical stimulus may be understood as operations that
facilitate such a goal. As such, our theory plays the role of a
‘‘computational theory’’ in Marr’s sense of the term. This stands
in stark contrast to the idea that our conceptual system is best
described in terms of interacting mental processes or capacities
(an idea consistent with Marr’s representation and algorithm level
of description). Henceforth, in order to make more intuitive the
role that invariance principles may play in cognition, we shall
emphasize the connection between our structural model and the
aforementioned computational level of description.
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On a different note, another significant and unique aspect
of our logico–analytic structural model will be that it does not
depend on choice probabilities nor on multiple parameters as is
the case with the mental process models discussed in the previous
section. This is significant since most cognitive models are of the
statistical and probabilistic variety. Our successful excursion into
non-probabilistic domains can only help expand the cognitive
modeling horizon.
The outline for the remainder of this treatise is as follows.

First, we will give a brief introduction to Boolean categories, the
classification of these in terms of typed families, and Feldman’s
two models of Boolean complexity. We then shall discuss some of
the challenges facing the minimization-based complexity model
as a prelude to our theory. In Section 3, we will introduce
our mathematical framework for economically characterizing and
identifying degrees of invariances or symmetries in Boolean
categories. This will be followed by our characterization of
structural complexity in terms of degrees of invariance.
The core idea underlying our discussion will be that an

invariance-based measure of structural complexity is a good pre-
dictor of Boolean concept learning difficulty; and more impor-
tantly, that invariance, and not complexity, is the fundamental
principle underlyinghuman concept learning. In otherwords, since
invariance determines structural complexity, it also determines
and explains why some concepts are more difficult to learn than
others. This assumptionwill be referred to as the categorical invari-
ance theory of concept learning or ‘‘CIT’’ and its formal description
will be referred to as the categorical invariance model of concept
learning or ‘‘CIM’’.
Lastly, in Section 5 we will examine how well the CIM,

without free parameters, predicts the difficulty ordering of sets of
categories of the type studied by Shepard, Hovland, and Jenkins
(1961) consisting of three binary dimensions and four positive
examples (i.e., 3(4) type categories), andmore generally for the set
of 41 category types studied by Feldman (2000). This is followed
by a discussion of parity effects and the predictions made by our
model when the 35 additional category types in down parity are
included in our original set of 41 (76 category types in total). The
paper ends in Section 6 where we summarize our results and
discuss a list of open problems and research directions.

2. Boolean categories and complexity

2.1. Formal representation and notational preliminaries

Since we shall define Boolean categories using the language of
Boolean algebra, we begin with a definition of a Boolean algebra
and a Boolean expression (or formula). What follows should be
regarded as a semiformal introduction to a few key concepts
from Boolean algebra that are useful in the development of our
categorical invariance model. For a more rigorous and detailed
introduction to Boolean algebra, including its model theoretic
details, the reader is referred to Mendelson (1970, 1979).

Definition 2.1. A Boolean Algebra is a sextuple 〈B, 0, 1,+, · ,′〉
consisting of an arbitrary (carrier) set B together with two
(distinct) elements 0 and 1, a negation operator ′, and two binary
operations + and · such that for all elements x, y, and z of B, the
following axioms hold: Commutativity: (1a) x + y = y + x, (1b)
x · y = y · x; Associativity: (2a) x + (y + z) = (x + y) + z, (2b)
x · (y · z) = (x ·y) · z; Distributivity: (3a) (x+y) · z = (x · z)+ (y · z),
(3b) (x · y) + z = (x + z)(y + z); Indempotency: (4a) x + x = x,
(4b) x ·x = x; Identity: (5a) x+0 = x, (5b) x+1 = 1, (5c) x ·0 = 0,
(5d) x · 1 = 1; Negation: (6a) (x′)′ = x, (6b) 0′ = 1, (6c) 1′ = 0;
and De Morgan: (7a) (x+ y)′ = x′ · y′, (7b) (x · y)′ = x′ + y′.
We now define recursively the class of Boolean expressions.
This is important since Boolean expressions (or Boolean formulae)
will be used to define Boolean categories.

Definition 2.2. The class F of Boolean expressions (or Boolean
formulae) is defined recursively as follows (where n is an arbitrary
positive integer):
(1) The Boolean variables a, b, c, d, w, x, y, z, A, B, C,D,W,X,

Y , Z, x1, . . . , xn, y1, . . . , yn, z1, . . . , zn, and the constants 0 and 1
are elements of F .
(2) If ϕ ∈ F and ψ ∈ F then (ϕ + ψ) ∈ F , (ϕ · ψ) ∈ F , and

ϕ′ ∈ F .
(3) Nothing else is an element of F .

The Boolean variables above are variables with 1, 0, and
elements of the carrier set B as their possible values. To simplify
our exposition, we shall adopt certain notational conventions
regarding the class F of Boolean expressions defined above. First,
whenever there is no ambiguity, we shall drop parentheses from
Boolean expressions. Also, following the notational conventions of
the Boolean algebra of propositional logic, we will use the symbol
‘‘∼’’ interchangeably with ‘‘′’’, the symbol ‘‘∨’’ interchangeably
with the symbol ‘‘+’’, and the symbol ‘‘∧’’ interchangeably with
the symbol ‘‘·’’. Finally, if ϕ and ψ are Boolean expressions, we
shall abbreviate ϕ∧ψ and ϕ·ψ with ϕψ . Boolean expressions and
Boolean functions are intimately connected as may be seen from
the following.

Definition 2.3. LetB be the carrier set of a Boolean algebra B and
let B = B∪{0, 1}. An n-vary Boolean function F n of B is a mapping
from the cross product

∏n
i=1 Bi to B (where i and n are positive

integers and for any i, Bi = B ∪ {0, 1}). The value of the variable n
is referred to as the degree of the function.

It is well known that every Boolean expression determines
a Boolean function (for details see Church, 1956; Mendelson,
1979). Given a Boolean algebra B = 〈B, 0, 1,+, · ,′〉 and a
Boolean expression µ(v1, . . . , vn) with variables v1, . . . , vn, we
can determine a corresponding Boolean function µnB(v1, . . . , vn)
such that for every n-tuple (b1, . . . , bn) ∈ B, µnB(b1, . . . , bn) is
the element of B obtained by assigning the values b1, . . . , bn to
v1, . . . , vn respectively, and interpreting the symbols ‘‘+’’, ‘‘·’’, and
‘‘′’’ to stand for the corresponding operations in B.
For example, according to the standard truth-table definitions

of the Boolean operators ‘‘or’’ (written as ‘‘∨’’ or ‘‘+’’ in our
notation) and ‘‘not’’ (written as ‘‘′’’ or ‘‘∼’’ in our notation) the
Boolean expression a′+b′ determines the Boolean function f 2(a, b)
which, in respect to the two-element Boolean algebra containing
the carrier set B = {0, 1}, maps the set of ordered pairs
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}, corresponding to the possible values
of the variables a and b in the expression to the set {0, 1} as follows:
f 2 : (0, 0) → 1, f 2 : (0, 1) → 1, f 2 : (1, 0) → 1, and
f 2 : (1, 1)→ 0.
Henceforth, we shall use the following superscripted lower-

case letters of the Latin alphabet to stand for particular Boolean
functions: f n, gn, hn; and the upper-case letters F n,Gn,Hn to
stand for arbitrary Boolean functions (where n is the degree
of the function as defined in Definition 2.3). Also, whenever
the arguments of the function are specified, we shall drop the
superscript n. Finally, we shall refer to Boolean functions applied
to their arguments also as ‘‘Boolean functions’’, even though they
are technically not functions. For example, although the expression
f 2(a, b) refers to the result of applying a particular function f 2 to
the variables a and b, we nonetheless shall, as is common practice,
refer to the entire expression as a ‘‘Boolean function’’.
With this simple vocabulary we can define the notion of a

Boolean category. Simply stated, Boolean categories are sets of
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Fig. 2.1. Family of categories with three binary dimensions and four positive examples graphed in Boolean space. These are known as the Shepard, Hovland, and Jenkins
(SHJ) category types.
objects defined by Boolean expressions. Thus, they are what some
logicians refer to as the extension of a Boolean function (see
Church, 1956 for a discussion of the notion of extensionality). These
expressions define sets of objects when each of their distinct
variables is interpreted as a distinct dimension. The values of the
variables (i.e., 0 or 1) can then be interpreted as one of two possible
features. For example, if we let the variable x stand for the binary
dimension of color (binary because we restrict its range to two
possible values) and y for the binary dimension of shape, then, by
letting x = red, x′ = black, y = round, and y′ = square, we
can define the Boolean set or category consisting of a black round
object and a red square objectwith the Boolean expression x′y+xy′.
Boolean expressions or formulae that completely define Boolean

categories are, like the expression in our previous example, in
disjunctive normal form (DNF). Before defining what it means for a
formula to be in disjunctive normal form, we define a fundamental
conjunction as either (1) a literal (i.e., a negated or unnegated
variable), or (2) a conjunction of two or more literals no two of
which involve the same variable (where by a conjunctionwemean
a product of Boolean expressions and by a disjunction we mean a
sum of Boolean expressions). For example, while xyz (abbreviation
for x∧y∧z) is a fundamental conjunction, xyx′ is not a fundamental
conjunction since the literals x and x′ involve the same variable x.
A Boolean formula ϕ is said to be in DNF if either (1) ϕ is a

fundamental conjunction, or (2) ϕ is a disjunction of two or more
fundamental conjunctions (as long as not all of the literals of any
fundamental conjunction in ϕ occur in any other fundamental
conjunction in ϕ). Furthermore, there is a special type of DNF,
known as a full DNF, which we will be particularly interested in
since the types of categories in Shepard et al. (1961) and in Feldman
(2000, 2003a) assume this form.
A Boolean expression ϕ in DNF is said to be in full DNF in

respect to its variables x1, . . . , xn if (1) any variable in ϕ is one of
the variables x1, . . . , xn (i.e., ϕ is closed under the set of variables
{x1, . . . , xn}), and (2) each disjunct in ϕ contains all the variables
x1, . . . , xn. An important theorem in the Boolean algebra states that
any Boolean function that is not a self-contradiction (i.e., equal to
zero under all possible truth-value assignments to its variables) is
logically equivalent to a DNF expression.
Categories defined by full DNF formulae have been studied

extensively by investigators such as Shepard et al. (1961), Bourne
(1966), and more recently by Nosofsky, Gluck, Palmeri, McKinley,
and Glauthier (1994) and Feldman (2000). Of particular interest
are the Boolean categories investigated by Shepard et al. (1961)
consisting of three binary features or dimensions and four
examples (four positives) and four non-examples (four negatives)
for a total of eight stimuli. (Later, Feldman (2000) refers to these
types of categories as the 3(4) family of ‘‘concepts’’ where the
numeral 3 denotes the number of binary dimensions or features
and the numeral 4 denotes the number of positive stimuli1). For
example, suppose that the dimensions involved are those of shape,

1 Although the terms ‘‘concept’’ and ‘‘category’’ are often used interchangeably
in the literature, we advice against such practice. Accordingly, in this paper, we
reserve the term ‘‘concept’’ to refer to the mental object, mental event, or mental
size, and color; if we let x stand for triangular, x′ stand for round,
y stand for small, y′ stand for large, z stand for white, and z ′ stand
for black, then one of the categories studied by Shepard et al. can
be expressed by the Boolean formula x′y′z ′ + x′y′z + x′yz ′ + x′yz,
where the symbol ‘‘+’’ stands for the logical operator or.
In other words, the formula perfectly defines the category

associated with objects that are either round, large, and black,
or round, large, and white, or round, small, and black, or round,
small, and white. Note that each of the four conjunctions x′y′z ′,
x′y′z, x′yz ′, and x′yz in the formula above represents a positive
example of the category, while the remaining four out of eight (23)
possible conjunctions or logical products represent non-examples
or negative examples of the category. Since in this paper we shall
use Boolean formulae exclusively to define Boolean categories,
then each Boolean formula in full DNF should be understood
as denoting a Boolean category. That is, in our discussion, all
Boolean formulae are mathematical representations of well-
defined categories.
Although there are 70

(
C84 =

8!
(8−4)!4!

)
possible ways of select-

ing four positive examples out of a total of eight possible objects,
subsets of these 70 are structurally isomorphic or structurally re-
ducible to each other. This is apparent when considering that in a
Boolean expression defining a Boolean category, the choice of la-
bels (i.e., literals) for the various features as well as their negation
is arbitrary, so that any Boolean expression generated fromanother
as the result of a consistent reassignment of labels and their nega-
tion defines the same category structure as the original. For exam-
ple, the category consisting of a black circle and a white square is
structurally equivalent to the category consisting of a black square
and a white circle, and both are defined by xy+ x′y′ or by xy′+ x′y.
Structural equivalence can also be illustrated geometrically

using a Boolean cube (see Fig. 2.1). The relationship between
the four points representing the four disjuncts in the Boolean
expression is invariant in respect to rigid rotations of the cube. It
turns out that there are exactly six such structural relationships
that partition the set of all possible Boolean categories 3(4)
(three dimensions and four positive examples) into six subsets or
equivalent classes (for an in depth combinatorial discussion see
Aiken (1951) or Higonnet and Grea (1958)). These six category
types combined are referred to as the 3(4) family of Boolean
categories. More generally, a D(p) family of Boolean categories is
a set consisting of all the category types with D dimensions and p
positive examples.
Members of the 3(4) category family are represented in Fig. 2.1

as points in Boolean Space and in Fig. 2.2 as Boolean functions
in full DNF. Whenever convenient, we use Roman numerals
as abbreviations for the longer Arabic numeral descriptions of
category types involving the number of dimensions and positive
examples: e.g., type I is a shorthand for 3(4)-1.

representation corresponding to, or associated with, some set of objects given as a
categorical stimulus. We call such sets of objects‘‘categories’’. Moreover, whenever
such sets of objects are defined by a Boolean expression or rule, we shall refer to
them as ‘‘Boolean categories’’, and more generally, as‘‘Boolean sets’’.
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Fig. 2.2. Boolean expressions corresponding to the Shepard, Hovland, and Jenkins
category types.

These six types were studied by Shepard et al. (1961) who
measured the degree of learning difficulty by the number of
errors that subjects made until reaching a criterion for correct
classifications. It was found that the six category types listed in
Figs. 2.1 and 2.2 followed the following order of learning difficulty:
I < II < III, IV,V < VI. Thus type I problems involving the
simplest concept or category structure yielded the least number
of errors, followed by type II, followed by types III, IV,V which
yielded approximately the same number or errors, and finally
type VI. This ordering, known as the SHJ ordering, has served as
a fundamental benchmark for models of human concept learning
(for a discussion see Nosofsky et al. (1994)).

2.2. Minimization–complexity hypothesis

Feldman (2000), motivated by the Shepard et al. (1961) study,
sought to find a connection between the degree of learning
difficulty of a Boolean category and what he defines as its Boolean
complexity. As defined by Feldman (2000, p.630): ‘‘The Boolean
complexity of a propositional concept is the length of the shortest
Boolean formula logically equivalent to the concept, usually
expressed in terms of the number of literals (positive or negative
variables)’’. Feldman’s study examines an unprecedentedly large
number of Boolean category families including the SHJ family:
these included the 3(2), 3(3), 3(4), 4(2), 4(3), and 4(4) families for
a total of 41 Boolean category types.
In addition, Feldman pays close attention to families where the

number of positive and negative examples differ. For example, 3(2)
categories each have two positives and six negatives and their
mirror image has six positives and two negatives. Feldman refers
to this distinction as a distinction in the parity of the Boolean
category, where the category is in up parity when the number of
positive examples is smaller than the negative examples and in
down parity when the positives examples are swapped for the
negatives.
Taking complexity (and parity) as his independent variables

and proportion of correct responses as his dependent variable,
he concludes from the data that, in general, subjective difficulty
is well predicted by Boolean complexity and category parity.
Clearly, since parity cannot be tested for the SHJ types, Boolean
complexity is then the sole independent variable in regards to the
SHJ types. Moreover, Feldman (2000, p. 630) claims: ‘‘When the
SHJ types are considered from the perspective of mathematical
logic, however, a simple explanation of the difficulty ordering
emerges: the difficulty of the six types is precisely predicted
by their Boolean complexity.’’ He adds later in page 631 that:
‘‘These Boolean complexity values predict the order of empirical
difficulty precisely. This exact correspondence has not previously
been noted, though Shepard et al. speculated about it in their
original paper, and the relation between Boolean complexity and
human learning has never been comprehensively tested.’’
Under this approach lie the suppositions (1) that there are
structural properties intrinsic to a stimulus that can be used
to describe how complicated the stimulus is, and (2) that
such properties are good predictors of the learning difficulty of
the stimulus. Unfortunately, Feldman’s minimization-complexity
hypothesis has faced strong challenges. For one, Feldman himself
has acknowledged that the simplification (i.e., minimization)
heuristic of Feldman (2000) based on factorization alone may not
be cognitively plausible (Feldman, 2003b).
Secondly, the complexity values reported by Feldman (2000)

are not in fact the minimal values for 9 of the 41 category types
(Vigo, 2006). Of particular concern is the fact that the actual
minimal expressions corresponding to the SHJ types do not reflect
the SHJ ordering (see Vigo, 2006, for a discussion) and make
the overall complexity predictions less significant. Henceforth, we
refer to the complexity model that is based on the actual minimal
expressions as the ‘‘strongm-complexity model’’, and likewise, we
refer to the model implemented by Feldman (2000) in his Nature
paper as the ‘‘weakm-complexity model’’.
Feldman (2006), aware of these difficulties, has recently

introduced his spectral decomposition model. Like Garner (1970)
the basic idea is that learning from examples involves the
extractions of patterns and regularities. The formal model
describes how a pattern (expressed in terms of a Boolean rule)
may be decomposed algebraically into a ‘‘spectrum’’ of component
patterns, each of which is a simpler or more ‘‘atomic’’ regularity.
Regularities of higher degree representmore idiosyncratic patterns
while regularities of lower degree represent simpler patterns in
the original decomposed pattern. The full spectral breakdown
of the component patterns of a Boolean category in terms of
minimal component regularities is known as the power series
of the pattern. These are expressed in terms of what he calls
implication polynomials.
An implication polynomial ΦK of degree K is an expression of

the form σ1 · · · σK → σ0 (where each σi stands for a Boolean
variable and each Boolean variable stands in turn for a particular
dimension). These types of expressions are structurally equivalent
or congruent to ¬(σ1 · · · σK+1) (see the discussion above on
structural equivalence). It turns out that the union of categories of
arbitrary degree can be expressed completely as the conjunction of
the implication polynomials that each category satisfies. Given this
fact, a natural measure of complexity would be to determine the
number of rules of each degree (i.e., number of dimensions) that a
given Boolean category satisfies. An obstacle to this is the fact that
there are many possible structurally equivalent or redundant rules
for each degree considered.
To address this problem, Feldman shows that in fact there is a

minimal irredundant set of implication polynomials P (x), where
x is a set of objects belonging to the category that is defined by
the Boolean expression in question (for details see Feldman, 2006).
Based on this proposition he defines a measure of complexity for
Boolean categories in terms of their power spectrum. Letting ΦKx
denote the set of implication polynomials in P (x) having degree
K , the power spectrum of x at degree K is denoted by λKx and is
simply the size or cardinality of the set ΦKx (i.e., λ

K
x = |Φ

K
x |). The

algebraic complexity of a Boolean category is then defined by the
weighted sum of its power spectrum:

λT =

D−1∑
K=0

wKλ
K
x

where the weights wK are linear increasing in K and sum to zero
(where wK ∝ K ,

∑
wK = 0, and

∑
|wK | = 1). Thus, the model

requires a weight per level of decomposition.
With our model of invariance we shall approach Boolean

category complexity from a considerably different perspective.
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As discussed, our ultimate goal is to devise a structural Boolean
algebraic and analytic account of human concept learning that
predicts and explains human concept learning difficulty based on
invariance principles. As it turns out, this can be achieved without
free parameters within the model. With this aim in mind, we
proceed to answer the following question: what is it about the
intrinsic structure of some Boolean categories that makes them
more difficult to learn than others?
We suggest that the answer lies on a radically different notion of

complexity which henceforth we shall call ‘‘structural complexity
or invariance-based complexity (i-complexity)’’. Unlike the min-
imization notion of complexity examined above (m-complexity),
i-complexity is based on both the inherent degree of invariance of
the Boolean category and its size (i.e., cardinality). This synthesis
of invariance and complexity notions may be regarded as a first
step toward the conceptual unification of the various structural ac-
counts of concept learning discussed above. Since the key quantity
in our definition of structural complexity is the degree of categor-
ical invariance, we lay the foundations for it next.

3. Logical manifold theory

3.1. The derivative of a Boolean category

In the previous sections we discussed how the structural
properties of invariance and complexity, independently, have
played a key role in the development of structuralmodels. Also, we
characterized ourmodeling approach (to be introduced in the next
few sections) as unique in that it unifies these two fundamental
structural properties in a simple and direct manner. Indeed, in
our model, complexity and invariance may be understood as
inverses of each other! However, although complexity will play
an important role in our model, it is invariance that is the crux of
the model, since it is invariance (along with cardinality) that will
determine the degree of structural complexity of a stimulus in the
first place.
In view of this, the key to our model is to find a way of

characterizing in an economical, intuitive, and natural way, the
degree of invariance inherent to a Boolean category, and how
it bears on its structural complexity. We accomplish this by
introducing next a mathematical framework that is a rudimentary
hybrid of Boolean algebra, discrete topology, and analysis. The
framework is based in part on a concept that is analogous to some
extent to the derivative in calculus.
The Boolean derivative was introduced by Reed (1954) in a

discussion of error-correcting codes in electrical circuits. The basic
concept has been mainly relegated to this very specialized domain
of applied Boolean algebra. A more comprehensive study and
generalization of the concept can be found in Thayse (1981).
Unfortunately, the notation found in the aforementioned papers
is somewhat clumsy and counterintuitive in respect to our goals;
hence,we have devised a different notation using the hatted partial
derivative operator suggestive of (two) discrete states.
In addition, the concepts that we are about to define, including

the logical manifoldof a category, the logical norm, invariance
signatures, and the rest of our mathematical framework (in
short, ‘‘logical manifold theory’’), including the derivations of
our invariance order, measures of invariance, and the invariance
‘‘laws’’ based on these, are all original contributions to the field.
In fact, as far as we know, this is the first time that simple
core concepts from analysis, discrete topology, and Boolean
algebra have been integrated in this fashion with the goal of
measuring degrees of categorical invariance. Next, we proceed
with a discussion of the Boolean derivative.
The Boolean derivative is an effective formalism for revealing

the invariance information intrinsic to Boolean categories. The
derivative of a Boolean expression is defined as follows.
Table 3.1
Definition of the ‘‘exclusive-or’’ connective.

x 1 0 1 0
y 1 1 0 0
(x⊕ y) 0 1 1 0

Definition 3.1. Let F be a Boolean function of n ≥ 1 variables
x1 · · · xn, then its Boolean partial derivative in respect to xi (where
1 ≤ i ≤ n) is defined as

∂̂F(x1 · · · xn)

∂̂xi
= F(x1 · · · xi · · · xn)⊕ F(x1 · · · ∼ xi · · · xn).

The symbol ‘‘⊕’’ stands for the ‘‘exclusive-or’’ operator defined
by the truth-table in Table 3.1.
Note that the Boolean partial derivative is analogous to the

partial derivative in Calculus since in both we evaluate how
the dependent variable F(x1 · · · xi · · · xn) changes in respect to a
change in the independent variable xi. As in differential calculus,
we define the nth-order Boolean partial derivative of a Boolean
function as the result of taking the Boolean partial derivative of
the Boolean partial derivative of the Boolean partial derivative
etc. of the function a total of n times as illustrated below (note that
∂̂1F(x1···xi···xn)

∂̂xi
1 below is the same thing as ∂̂F(x1...xn)

∂̂xi
):

∂̂nF(x1 · · · xi · · · xn)

∂̂xni
=
∂̂n

∂̂xni

(
∂̂n−1

∂̂xn−1i
· · ·

(
∂̂1F(x1 · · · xi · · · xn)

∂̂xi
1

))
.

Henceforth, we shall use the following shorthand for the partial
Boolean derivative of a Boolean function:

∂̂F(x1 · · · xn)

∂̂xi
= ∂̂xiF(x1 · · · xn).

Although higher-order Boolean partial derivatives (i.e., of order
greater than one) are all equal to zero, they are nonetheless useful
in generating equivalent but distinct Boolean expressions. The
partial Boolean derivative of a Boolean expression acts as a test
for logical equivalence in that it determines whether or not the
Boolean expression obtained by replacing xi with x′ i is equivalent
to the original.
For example, if we let F(x, y) = xy, then the resulting Boolean

derivative of F(x, y) in respect to x is xy ⊕ x′y. If we construct a
truth table for this new expression we obtain the value true or 1
when y is true and the value false or 0 when y is false. Thus, for this
expression, the value of its Boolean derivative can be predicted by
the value of the variable y. The key idea to remember here is that
the derivative of this function is contingent upon the value of y.
To facilitate our analysis, we evaluate the Boolean derivatives of

Boolean expressions using truth tables. Truth table analysis allows
us to identify under which truth-value assignments to its variables
the Boolean derivative is true. If it is true under all possible truth-
value assignments to its variables, then we say that the Boolean
derivative is a tautology; on the other hand, if it is false under all
its possible truth-value assignments then we say that it is a self-
contradiction. When the Boolean derivative is neither a tautology
nor a self-contradiction, it is called a contingency.
Clearly, Boolean expressions that are tautologies or self-

contradictions are truth-value invariant in respect to the truth-
value assignments to their variables, while contingencies only
exhibit a certain degree of truth-value invariance. We shall discuss
this point in greater detail in the following sections. Fig. 3.1 gives
the Boolean derivatives for the SHJ category types in respect to
each of their dimensions. We computed these using truth-table
analysis as illustrated in Fig. 3.2 for the 3(4)-3 category type. In the
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Fig. 3.1. Boolean partial derivatives of the category types studied by Shepard et al. (1961).
same figure, contingencies are represented by expressions in full
DNF.
But how do these truth-value invariances translate into

the degree of qualitative invariance of a Boolean categorical
stimulus? Recall that category types are defined by Boolean
expressions whose variables represent binary dimensions. Thus,
the application of the partial Boolean derivative to an expression
that defines a particular category first transforms the objects of the
category along one dimension, and then logically ‘‘subtracts’’ the
newly obtained category from the original category.
For example, take the Boolean expression x + y (i.e., ‘‘x or y’’)

whoseDNF is xy′+x′y+xy. In this latter expression, if we assign the
value black to the variable x representing the color dimension and
assign the value circular to the variable y representing the shape
dimension, then we say that xy′ + x′y + xy defines the category
consisting of three objects, namely, a black triangle, a white
circle, and a black circle, as illustrated in Fig. 3.4. Accordingly, the
expression xy′+x′y+xy evaluates to true or 1 under only three out
of four possible truth-value assignments: namely, the assignments
(1, 0), (0, 1), and (1, 1). These three pairs of values correspond to
(black, triangular), (white, circular), and (black, circular) under our
interpretation, and the fact that they satisfy (i.e., make true) the
expression xy′ + x′y + xy indicates that they are members of the
category that the expression defines.
Now, the Boolean derivative of xy′ + x′y + xy in respect to x

(the variable standing for the dimension of color) is the logical
difference (as defined by the exclusive-or operator ⊕) between
xy′ + x′y + xy (the expression that defines the original category
described above), and x′y′+xy+x′y (the expression that defines its
corresponding perturbed category). In our example, this perturbed
category consists of awhite triangle, a black circle, and awhite circle,
as illustrated in Fig. 3.4, and like in the original category defined
by xy′ + x′y + xy, those truth-value assignments that satisfy the
expression x′y′+xy+x′y represent the objects or exemplars in the
perturbed category.
The logical difference between the expressions that define

the two categories simply tells us which objects in the original
category are also in the perturbed category. This can be verified
by examining Fig. 3.4. The basic idea is that, of the truth-value
assignments that satisfy (i.e., make true) xy′ + x′y+ xy, those that
do not satisfy its Boolean derivative are precisely those that are
equivalent to x′y′ + xy+ x′y and hence, those with corresponding
exemplars or objects in the perturbed category defined by x′y′ +
xy + x′y. The reason is that the logical difference between two
Boolean expressions evaluates to 0 only when the two expressions
are equivalent (i.e., are satisfied or made true by the same truth-
value assignments).

3.2. The logical norm

In Section 3.1, we showed that, with an appropriate measure
of the Boolean derivative, it might be possible to express
quantitatively the degree of partial invariance inherent to a
Boolean category. In this section we introduce such a measure.
The goal is to measure the degree of qualitative invariance that
is revealed by an application of the Boolean partial derivative
operator on a Boolean category (or more precisely, on the Boolean
expression that defines it).
The intuition behind such a measure is that it must be a

count of the number of items from the original category that
are preserved in the derived (or perturbed) category. This is
achieved by finding out for each possible truth-value assignment
that satisfies (i.e., makes true) the Boolean expression that defines
the category, whether or not it also does not satisfy the Boolean
derivative of the Boolean expression that defines the category. The
idea is that, if false, that particular conjunction representing an
item in the category has been preserved in the perturbed category.
If, on the other hand, the particular conjunction evaluates to true
then it has not been preserved in the perturbed category.
For the remainder of this paper, a category family type will be

denoted by D(p), where D is the number of binary dimensions
and p is the number of given positive examples. When referring
to a specific category type, sometimes we shall use the notation
D(p) − t , where t is a number used in Feldman’s catalogue of
categories (2003a) to denote the particular members within a
family. Boolean expressions that we shall use to define Boolean
categories are assumed to be in full disjunctive normal form. Such
expressions provide a full description of the dimensional structure
of a category. Finally, we use the capital bold letters of the Latin
alphabet F, G, and H to stand for arbitrary Boolean expressions
intended to define Boolean categories and we shall use the letters
F ,G,H for the Boolean functions determined by these Boolean
expressions. Likewise, we shall abbreviate the Boolean expression
corresponding to F(x1 · · · xi · · · xn)with Fxi and F(x1 · · · ∼ xi · · · xn)
with Fx′i .
Moreover, we define an instantiated fundamental conjunction

(see Section 2 for a definition of a fundamental conjunction)
as a vector of truth values that is the result of replacing each
literal in the fundamental conjunction for a truth value depending
on whether the variable is negated or not. Formally, we define
the instantiation function γ as a mapping from a set of literals
L = {t1, . . . , tn} to a set of truth values V = {0, 1} such that
∀ti ∈ L, γ (ti) = 0 whenever ti is negated and γ (ti) = 1
whenever ti is not negated (where i and n are positive integers).
Then, the instantiated fundamental conjunction consisting of n
literals t1 . . . ti . . . tn is the vector of truth values defined by
I(t1 . . . ti . . . tn) = γ (t1) . . . γ (ti) . . . γ (tn). For example, I(xyz ′) =
110 and I(xy′z ′w) = 1001. Throughout our discussion, and as
previously alluded to, we assume that these vectors of truth values
(or strings) correspond to stimuli in categories whenever each of
their components is systematically and consistently interpreted as
a value of the particular relevant dimension across all categories in
question.
In addition, we define the set A0(F) as the set of truth-value

assignments represented also as vectors of zeros and ones (as
above) for which the Boolean expression F (not necessarily in
DNF) is false. Likewise,A1(F) is the set of truth-value assignments
represented also as vectors of zeros and ones (as above) for which
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Fig. 3.2. Boolean partial derivative in respect to x of the 3(4)-3 category type. The exclusive-or operation (in the middle of the Boolean expression) is represented by ‘‘⊕’’
while ‘‘or’’ is represented by ‘‘+’’ and ‘‘and’’ is represented by ‘‘̂ ’’.
the Boolean expression F (not necessarily in DNF) is true. Also, we
define D(F) as the set of fundamental conjunctions of a Boolean
expression in full DNF and DI(F) = {I(c) | c ∈ D(F)} as the set
of instantiated fundamental conjunctions of F in full DNF. This set
can also be interpreted as the set of truth-value assignments that
satisfy (i.e., assign a value of 1 to) F. Clearly, |D(F)| = |DI(F)| = p
andDI(F) = A1(F) (seeMendelson (1979, for a proof of the latter).
We can now justify why it is that the Boolean partial derivative is
indeed a qualitative indicator of invariance between the original
Boolean category or category of items and the derived category.
To achieve this goal let us examine the intuitive way of

measuring the invariance expressed by the Boolean partial
derivative. First, consider that the Boolean partial derivative
F(x1 · · · xi · · · xn) ⊕ F(x1 · · · ∼ xi · · · xn) compares two Boolean
expressions F(x1 · · · xi · · · xn) and F(x1 · · · ∼ xi · · · xn) that define
two categories respectively. We shall refer to the category
defined by F(x1 · · · xi · · · xn) as the original category FO and to
the category defined by F(x1 · · · ∼ xi · · · xn) as the ‘‘perturbed’’
category FP. If we represent the stimuli (i.e., objects) of the
categories by the instantiated conjunctions of the DNF expressions
that define them, then FO = DI(F(x1 · · · xi · · · xn)) and FP =

DI(F(x1 · · · ∼ xi · · · xn)).
Then, the simplest way of measuring the invariance expressed

by a partial Boolean derivative is by taking the ratio between the
number of exemplars that the original category and the perturbed
category have in common and the number of exemplars in the
original category. More formally, |FO∩FP|

|FO|
. The problem with this

expression is that it has been formulated in terms of categories and
not in terms of the formal properties of the logical description of
such categories. Of course, since what we wish to build is a model
of invariance in Boolean algebraic terms, we then use the following
definition instead.

Definition 3.2. Let F be a Boolean expression that defines a
Boolean category. The logical norm or L-norm of F in respect to xi
is defined as∥∥∥∥∥ ∂̂F∂̂xi

∥∥∥∥∥ =
∣∣DI(F) ∩A0(̂∂xiF)

∣∣
|DI(F)|

.

The basic idea behind this measure is that the number of truth-
value assignments that satisfy F and that are in the set of truth
assignments that do not satisfy the derivative of F are precisely
the truth-value assignments representing the preserved objects in
the perturbed category FP. For a proof that this logical measure of
qualitative invariance is equal to the intuitive measure |FO∩FP|

|FO|
, see

Proposition A.1 in the Appendix, which states that
|DI(F)∩A0 (̂∂xi F)|
|DI(F)|

=

|FO∩FP|
|FO|

.

Example 3.3. From this definition it is clear that the L-norm of
a function whose Boolean derivative is a tautology is 0 since
|DI(F)∩A0 (̂∂xi F)|

|DI(F)|
=
|DI(F)∩∅|
|DI(F)|

=
0

|DI(F)|
=

0
p = 0, the L-norm of a
function whose Boolean derivative is a self-contradiction is 1 since
|DI(F)∩A0 (̂∂xi F)|

|DI(F)|
=
|DI(F)∩{000,001,010,011,100,101,110,111}|

|DI(F)|
=
|DI(F)|
|DI(F)|

=

1, and the L-norm in respect to x of the Boolean category F =
x′y′z ′ + x′y′z + x′yz′ + xy′z computes to 12 since by truth table
analysis (see Fig. 3.2)A0(̂∂xF) = {001, 011, 101, 111} andDI(F) =
{000, 001, 010, 101}making |DI(F)∩A0 (̂∂xF)|

|DI(F)|
=
2
4 =

1
2 .

Again, it is important to recognize that, from a qualitative
standpoint, the Boolean derivative may be construed as a
relationship between two categories. As such, the L-norm is a direct
measure of this relationship between the original Boolean category
and the perturbed one with its changed dimensional value or
feature (e.g., the color white to the color black). This is evident
when considering the case of maximal logical identity between
the two Boolean functions representing the two categories: that
is, when every truth-value assignment to the Boolean derivative
evaluates to 0 (i.e., a self-contradiction).
In this case, the two categories are identical since the

Boolean expressions that define them are equivalent under every
possible truth-value assignment to the Boolean derivative. More
specifically, if the Boolean derivative of the Boolean expression
that defines category FO evaluates to 0 or false (in respect to
dimension d) for any of its truth-value assignments, then each
of the exemplars or objects that is in FO is also in the perturbed
category FP. Likewise, if the Boolean derivative of the function that
defines category FO evaluates to 1 or true for all its possible truth-
value assignments (i.e., is a tautology), this indicates that every
object in category FO will not be in FP.
Although the Boolean derivative along with its L-norm gives us

a means for measuring the degree of partial categorical invariance
inherent to a Boolean category in respect to single dimensions,
we still need a way of considering and combining invariances
across the D dimensions of the Boolean category. To achieve this
we introduce the notion of a logical manifold. Logical manifolds
characterize the degree of invariance or symmetry of a Boolean
category as a whole.

3.3. Logical manifolds

Thus farwe have introduced the Boolean partial derivative as an
operator on Boolean expressions capable of producing a Boolean
expression that can potentially describe how much qualitative
change a category undergoes as a whole when a featural change
takes place along one dimension. Furthermore, we introduced the
L-norm of a Boolean partial derivative as a simple quantitative
measure of the degree of invariance between a category and its
corresponding perturbed category.
Our goal is to measure the total intrinsic imperviousness to

change (i.e., invariance) of a Boolean category that is subjected to a
Boolean derivative transformation; we do this by computing the L-
norm of each of the D Boolean partial derivatives corresponding
to the category (where D is the number of dimensions in the
Boolean expression needed to define the category). To do this,
we introduce a new differential operator called the n-th logical
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Fig. 3.3. Instance of the AND category transformed into its perturbed counterpart along the two binary dimensions of color (represented by the variable X) and shape
(represented by the variable Y ). Below each transformation is the Boolean derivative expression that determines which elements are shared by the original category and its
perturbed counterpart. Note that no elements are shared in this example.
Λ(x+ y) =

(∥∥∥∥∥ ∂̂(x+ y)∂̂x

∥∥∥∥∥ ,
∥∥∥∥∥ ∂̂(x+ y)∂̂y

∥∥∥∥∥
)

=

(∣∣DI(x+ y) ∩A0(̂∂x(x+ y))
∣∣

|DI(x+ y)|
,

∣∣DI(x+ y) ∩A0(̂∂y(x+ y))
∣∣

|DI(x+ y)|

)

=

(∣∣DI(x+ y) ∩A0((x+ y)⊕ (x′ + y))
∣∣

|DI(x+ y)|
,

∣∣DI(x+ y) ∩A0((x+ y)⊕ (x+ y′))
∣∣

|DI(x+ y)|

)

=

(
|{(0, 1), (1, 0), (1, 1)} ∩ {(0, 1), (1, 1)}|

|{(0, 1), (1, 0), (1, 1)}|
,
|{(0, 1), (1, 0), (1, 1)} ∩ ({(1, 0), (1, 1)})|

|{(0, 1), (1, 0), (1, 1)}|

)
= (2/3, 2/3)

Box I.
manifold of a Boolean expression. This operator, when applied to
a Boolean expression, characterizes the overall invariance of the
category that the expression defines.
First, we define the logical gradient of a category as the

D-tuple containing its partial Boolean derivatives in respect to each
of its D dimensions. In contrast, we can say that a logical manifold
is simply the object generated by taking the L-norm of each of
the components of the Boolean category gradient (or Boolean set
gradient). A convenient way of thinking about logical manifolds is
in terms of vectors in invariance space. We shall revisit this idea
in more detail when we introduce the CIM. Formally, we define
a logical manifold as a Boolean differential operator on a Boolean
expression F or, equivalently, on the function F(x1 . . . xD) that the
Boolean expression F determines.

Definition 3.4. The nth logical manifold (where n is a positive
integer) of a Boolean function F(x1 · · · xD) with D variables as
arguments (where D is a positive integer) is a differential Boolean
operator that transforms F(x1 · · · xD) into an orderedD-tuple of the
L-norms of all its partial Boolean derivatives. We shall also refer
to the resulting ordered set as the logical manifold of the Boolean
category defined by the function F(x1 · · · xD). More formally,

Λn(F(x1 · · · xD))

=

(∥∥∥∥∥ ∂̂nF(x1 · · · xD)∂̂x1
n

∥∥∥∥∥ ,
∥∥∥∥∥ ∂̂nF(x1 · · · xD)∂̂x2

n

∥∥∥∥∥ , . . . ,
∥∥∥∥∥ ∂̂nF(x1 · · · xD)∂̂xD

n

∥∥∥∥∥
)
.

Remark. We shall adopt the convention not to specify the degree
of the logical manifold when n = 1. That is, Λ1(F(x1, . . . , xm)) =
Λ(F(x1 · · · xm)). Furthermore, if the function F (on variables
x1, . . . , xD) is determined by the Boolean expression F, we
shall also abbreviate

∥∥∥ ∂̂F(x1···xD)
∂̂xi

∥∥∥ with F̂xi(1 ≤ i ≤ D), and

Λ(F(x1 · · · xD))with F̂ so that F̂ =
(̂
Fx1 · · · F̂xD

)
.

Example 3.5. (0, 0) is the logical manifold of xy, as can be seen by
the following computation:

Λ(xy) =

(∥∥∥∥∥ ∂̂xy∂̂x
∥∥∥∥∥ ,
∥∥∥∥∥ ∂̂xy∂̂y

∥∥∥∥∥
)

=

(∣∣DI(xy) ∩A0(̂∂xxy)
∣∣

|DI(xy)|
,

∣∣DI(xy) ∩A0(̂∂yxy)
∣∣

|DI(xy)|

)

=

(∣∣DI(xy) ∩A0(xy⊕ x′y)
∣∣

|DI(xy)|
,

∣∣DI(xy) ∩A0(xy⊕ xy′)
∣∣

|DI(xy)|

)

=

(
|{(1, 1)} ∩ {(0, 0), (1, 0)}|

|{(1, 1)}|
,
|{(1, 1)} ∩ ({(0, 0), (0, 1)})|

|{(1, 1)}|

)
= (0, 0).

Fig. 3.3 shows an instance of the AND category and the truth
tables corresponding to the two Boolean derivatives in respect to
each of the two binary dimensions. We can also see in the figure
how the original AND category and its perturbed counterpart do
not have any elements in common. This fact is described perfectly
by the logical manifold of the expression that defines the category.

Similarly, we give an example for the OR category. Please note
that the OR category is a 2(3) type category (consisting of two
binary dimensions and three positive examples). In disjunctive
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Fig. 3.4. Instance of the OR category (consisting of two dimensions and three positive examples) transformed into its perturbed counterpart along the two binary dimensions
of color (represented by the variable X) and shape (represented by the variable Y ). Below the two transformations are the truth tables corresponding to each of the Boolean
derivatives. By using the L-normmeasure, these tables help us determine which elements are shared by the original category and its perturbed counterpart (in respect to the
dimensions of color and shape respectively). Note that two out of three elements are shared in this example in respect to each of the two dimensions. The numbers below
the tables indicate the order of evaluation of the Boolean operators.
normal form, a Boolean expression that defines this category is
xy + x′y + xy′. However, in the following example, for the sake
of clarity, we shall abbreviate this formula using the equivalent
expression x+y. In Fig. 3.4, we give the truth tables for the Boolean
derivatives of xy + x′y + xy′. The reader can then verify that the
logical manifold of the latter is identical to the logical manifold of
x+ y computed in Box I.

Example 3.6. Fig. 3.5 shows perceptual instances of the category
gradients of the 3(4) category family types where the perceptual
dimensions are that of color (black or white), shape (triangular or
round), and size (large or small).

The table in Fig. 3.7 gives the logical manifolds for the 41
category types studied in Feldman (2000). Logical manifolds
encode and reveal quantified invariances in terms of quantitative
logical invariances. Recall that the L-norm of a Boolean function
gives us a method for measuring degrees of categorical invariance
in respect to specific dimensions. The logical manifolds give us
an overall picture of the possible degrees of invariance of the
category in respect to each categorical dimension. That is, they
tell us how much of the original category as a whole remains the
same after undergoing a change in dimensional value for each
of its dimensions. But what does this have to do with structure?
The degrees of invariance of a category (in respect to each of its
dimensions) tell us how redundant each particular dimension is in
respect to the entire category. But more generally, it measures the
amount of relational information intrinsic to the category.
How humans detect invariance in a categorical stimulus is a

more difficult question to answer. Fig. 3.6 illustrates a plausible
cognitive mechanism for detecting categorical invariance that
is consistent with the computational theory accompanying our
structural model, the basic idea behind the figure above is that
agents possibly detect invariances by comparing a set of objects
to the set derived by applying a differential transformation (in
respect to each dimension) on the original set. So, if the first
dimension is color, then the four objects (in the case of the 3(4) type
category) will be represented as the perturbed category consisting
of the original four objects differing in color value in such way
that every black object is now white, and vice versa. These four
objects in the perturbed category are then compared to the objects
in the categorical stimulus. The greater the match, the greater the
invariance and the easier it is to learn and perhaps encode the
particular category.

4. Categorical invariance

4.1. Invariance order

We have already seen how logical manifolds reveal patterns
of logical invariance that are intrinsic to the category type at
various levels of featural analysis. But we still have not derived
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Fig. 3.5. Perceptual instances of category types in the SHJ family transformed three times (one for each binary dimension) by exchanging the values of each of its binary
dimensions. Category types I, II, and III are listed in vertical order on the left. Types IV, V, and VI are listed in vertical order in the middle.
Fig. 3.6. Detecting categorical invariances implicitly: cognitive agents may detect
invariances by comparing a set of objects to the set derived by applying a differential
transformation (in respect to each dimension) on the original set.

a way of measuring the degree of invariance of a Boolean
category as a whole. This is critical since, as explained, our
definition of structural complexity will be based on a measure
of categorical invariance. In this section we will examine some
ordinal characteristics of logical manifolds that will be helpful in
formulating such a measure. A natural way of ordering the logical
manifolds of the 41 category types in Fig. 3.7 is lexicographically
in terms of two dimensions: namely, the degree of invariance and
frequency of their components.
Let D(p) be the category family in question. Since logical

manifolds have two distinctive aspects – the L-norms of the
Boolean derivatives of the Boolean category and the frequency
of the L-norms – that we believe are contributors to overall
invariance, we define a two-dimensional order on the logical
manifolds of the members of the category family D(p). This is
achieved by ranking the logical manifolds of the category family
Fig. 3.7. Logical manifolds (LM) for 41 category types.

in a lexicographical type order so that those logical manifolds
containing the greatest number of maximal invariances are first in
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Fig. 4.1. Logical manifolds and invariance signatures of the SHJ category types
arranged according to their lexicographical ordering.

the order. We shall do this indirectly by constructing the set of the
invariance signatures of the logicalmanifolds of the category types.

Definition 4.1. Let F̂ = (̂Fx1 · · · F̂xD) be the logical manifold of
the Boolean expression F that defines a Boolean category in the
category family D(p). We define max(̂F) as the greatest rational
number in F̂.

Example 4.2. max
(( 1
2 ,
1
2 , 1

))
= 1.

Definition 4.3. Let S be an ordered n-tuple (x1, . . . , xn). Then, we
define FS (xi) , (where i and n are positive integers and 1 ≤ i ≤ n)
as the frequency or number of occurrences of xi in S.

We now define the lexicographical order relation on the set of
invariance signatures of the logical manifolds of a category family
of type D(p).

Definition 4.4. LetL =
{̂
F1 . . . F̂m

}
be the set of logical manifolds

of the categories in a Boolean category family of type D(p).
Corresponding to each F̂kεL(1 ≤ k ≤ m), there exists an ordered
pair of real numbers

(
max(̂Fk), F̂Fk

(
max(̂Fk)

))
. We call this pair

the invariance signature of F̂k. Let M =
{
max(̂Fk)|̂Fk ∈ L

}
and

let F =
{
F̂Fk

(
max(̂Fk)

)
|̂Fk ∈ L

}
. The cross product M × F =

{(x, y)|xεM ∧ yεF} is called the set of invariance signatures of L.
We can then define the lexicographical order relation� on the set
of invariance signatures as follows: (x, y) �

(
x′, y′

)
↔ [(x >

x′) ∨ [(x = x′) ∧ (y > y′)]]. Fig. 4.1 above illustrates this ordering
for the SHJ category types.

The lexicographical ordering on invariance signatures charac-
terizes the importance of maximal partial invariance over lower
degrees of partial invariance in the logical manifold of F. In other
words, although they are both important contributing factors, we
assume under this interpretation that the presence of one single
maximal partial invariance in respect to a particular dimension has
a greater ease of learnability impact on a cognizer’s perceptual sys-
tem than a greater number of lower degree invariances (in respect
to the remaining dimensions) combined. Hence, our conception of
partial invariance is a relative one.
In short, under this view, ‘‘goodness of pattern’’ (Garner, 1974)

supersedes frequency of pattern. Accordingly, we assume that
the degree of perceived invariance is directly proportional to the
maximal invariance value in the logical manifold of F and the
frequency of the maximal invariance value in the logical manifold
of F. We know from measurement theoretic results that the
lexicographical order as defined above is a strict weak order: that
is, a relation that is asymmetric and negatively transitive. More
specifically, a binary relation R is asymmetric on some set A iff
∀x, y ∈ A, xRy ⇒ ¬ (yRx) and it is negatively transitive iff
∀x, y, z ∈ A, ¬ (xRy) ∧ ¬ (yRz) ⇒ ¬ (xRz). Strict preference
relations in utility theory are often interpreted as strict weak
orders.
It is well known that strict weak orders are structures for which
there exist order-preserving functions (i.e., homomorphisms)
into the real numbers. Furthermore, the class of admissible
transformations on these order-preserving functions is the class
of monotone increasing functions making our scale an ordinal
scale (for these measurement theoretic details see Roberts (1979).
Given this result, we shall propose such a function in the following
section for computing the overall invariance of a Boolean category.
It is important to recognize that invariance information by itself

is not enough to characterize structural complexity. The reason
is that two categories may have the same logical manifold and
a very different number of elements. For example, the Boolean
categories 4(2)-2 and 4(4)-19 have the same logical manifolds but
the first has two elements while the later has twice as many.
Clearly, the latter should be deemed more structurally complex.
Thus, as pointed out on several occasions, both the degree of
categorical invariance and category size are necessary quantities
when determining structural complexity.
Furthermore, the ordinal measure of invariance introduced in

this section is a local measure. That is, it only indicates relative
degrees of invariance within category families. Our goal in the
next section is to propose a quantitative measure of the overall
(or global) degree of categorical invariance inherent to a Boolean
category across category families (as defined by the general
conceptual framework explained in the previous sections).Wewill
also introduce our definition of structural complexity based on
the said measure and on |DI(F)|, the cardinality of the Boolean
category.

4.2. Degree of invariance

A natural and intuitive way of measuring the relative degree
of categorical invariance of a Boolean category is by calculating
the distance (in invariance space) between its logical manifold and
the zero logical manifold 0̂D = (01 · · · 0D) (where D, as before, is
the number of arguments of the Boolean function that defines the
Boolean category or the number of dimensions associated with the
Boolean category in question). The zero logicalmanifold represents
the minimal invariance point in invariance space. For brevity, we
shall also write 0̂D = (01 . . . 0D) as 0̂ = (0 · · · 0).

Definition 4.5. The degree of categorical invariance Φ(F) of a
Boolean category defined by the Boolean expression F and
belonging to the family D(p) is the Euclidean distance of its logical
manifold from the (01 . . . 0D) logical manifold.

Φ(F) =

 D∑
i=1

∥∥∥∥∥ ∂̂F(x1 · · · xD)∂̂xi

∥∥∥∥∥
2
1/2 .

Furthermore, by interpreting the logical manifolds of Boolean
categories belonging to a D(p) family as vectors in D-dimensional
invariance space, then, the length of such vectors (i.e., their norm)
represent degrees of invariance. In other words, the degree of
invariance of a Boolean category is the normof the logicalmanifold
of the Boolean function that defines it. This invariance measure
preserves the lexicographical difficulty order�within the various
families. For example, the values for the 3(4) family (i.e., the SHJ
family) are 1.414, 1, .866, .866, .707, and 0 respectively. It also
shows the direct role that the Boolean derivatives and their L-
norms play in determining degrees of invariance.
The conceptual unity achieved by this measure should not be

underestimated. For instance, it is interesting to consider that
Minkowski Boolean distance measures such as the Euclidean
distance above had failed to account for the learning difficulty
ordering of Boolean categories. However, when instead we
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Fig. 5.1. CIM predictions. The observed data column is from Nosofsky et al. (1994). In Nosofsky et al., learning difficulty is given by the average probability of categorization
error over 25 blocks of 16 trials for each category type.
consider the distance, not between Boolean objects and/or
between Boolean categories, but between the logical manifolds
of the Boolean categories and the logical manifold representing
minimal invariance (i.e., the 0̂ logical manifold), a much more
successful picture emerges.

5. Structural complexity

5.1. Complexity as a function of invariance

With the invariance measure introduced in Section 4.2 we can
now define our notion of structural complexity. First, we notice
that the higher the degree of invariance of a Boolean category,
the more regularity of pattern it has—that is, the simpler it is.
Thus, the degree of structural or relational complexity of a Boolean
category is indirectly proportional to its degree of invariance. This
means that if the degree of invariance is 0, then the function
that defines structural complexity must yield a meaningful lowest
value for the inverse of 0. Secondly, the function should be
monotonic decreasing since any increase in invariance should yield
a corresponding decrease in structural complexity.
Moreover, as discussed in the previous section, intuitively, the

size of the Boolean category also plays a role in determining its
structural complexity. The size or cardinality of a Boolean category
is defined by |DI(F)| (see Section 4.2). This can also be interpreted
as simply the number of positive examples p of the category.
Thus, we propose the following formal definition of structural
complexity.

Definition 5.1. The degree of structural complexity Ψ (F) of a
Boolean category defined by the Boolean expression F and
belonging to the familyD(p) is indirectly proportional to its degree
of categorical invariance Φ(F) and directly proportional to its
cardinality |DI(F)|.

Ψ (F) = |DI(F)| ×

 D∑
i=1

∥∥∥∥∥ ∂̂F(x1 · · · xD)∂̂xi

∥∥∥∥∥
2
1/2 + 1

−1 .
Adding one to Φ(F) above makes it possible to assign a

meaningful quantity to the inverse of 0 without loss of generality.
Also, since |DI(F)| = p,

Ψ (F) = |DI(F)| × [Φ(F)+ 1]−1 = p [Φ(F)+ 1]−1 =
p

Φ(F)+ 1
.

Henceforth, we shall refer to Ψ (F), in the context of Boolean
category learnability, as the CIM (concept invariance model) and
to its corresponding structural and accompanying computational
theory as CIT (concept invariance theory). We shall show in the
next section that the CIM is a good predictor of concept learning
difficulty. For one, it predicts the empirical SHJ order in that
categories of type 3(4)-I are the easiest to learn since they contain
the maximal amount of invariance, while categories of type 3(4)-
II are more difficult. Categories of type 3(4)-III, 3(4)-IV, and 3(4)-
V are of approximately equal difficulty and all more difficult
than categories of type 3(4)-II. Finally, categories of type 3(4)-VI
are the most difficult of all. In a nutshell, we can describe the
difficulty ordering by the following sequence: I(1.66) < II(2) <
[III(2.14), IV(2.14),V(2.34)] < VI(4). The table in Fig. 5.1 displays
the predictions made by the CIM in respect to the SHJ ordering.
The lack of free parameters in the CIM inclines us to call its

relationship to concept learning performance a ‘‘law’’. Readersmay
try to draw a comparison between the CIM and Shepard’s (1987)
‘‘law’’ of generalization. In the CIM we compute the reciprocal of
the distance between logical manifolds rather than the negative
exponent of the distance between stimuli in some psychological
space. In addition, the CIM computes degrees of structural
complexity while Shepard’s model computes the probability of
generalization from a stimulus to another or, in other words, the
probability that a certain response learned to stimulus i is made to
stimulus j. In Section 5.2 we introduce an exponential version of
our model that invites further comparisons to Shepard’s model.
Thus far we have concentrated our discussion on the seminal

SHJ set of Boolean categories. We have developed a mathematical
framework for expressing degrees of invariance in Boolean
categories and have introduced a new measure of structural
complexity based on the said framework that predicts the critical
SHJ learning difficulty ordering. In the following section we aim to
find out howwell the CIM predicts the degree of learning difficulty
for all 41 category types investigated by Feldman (2000) and
compare these predictions with those made by the m-complexity
model (i.e., minimization complexity) of concept learning. Also,
we will discuss how our categorical invariance model compares
to Feldman’s λT spectral decomposition model. We use the same
data set that Feldman used in both his paper published in
‘‘Nature’’ (Feldman, 2000) and his paper published in ‘‘Journal of
Mathematical Psychology’’ (Feldman, 2006).

5.2. CIM predictions

We compared the learning difficulty predictions made by the
CIM for the 41 category types studied by Feldman (2000) to those
made by the strong version of Feldman’s m-complexity model. A
table of the predictions made by both models is seen in Fig. 5.2
below.
Fig. 5.3 shows predictions made by the strong version of them-

complexity model for the 41 category types. The model yields an
R2 = .42 accounting for approximately 42% of the variance. The
complexity values are computedusing aheuristic proposedbyVigo
(2006) that is a better approximation of the strong version of the
m-complexity model. Feldman’s original m-complexity values for
the 41 category types (i.e., the weak version of the m-complexity
model) yield an R2 = .45. In contrast, our invariance ‘‘law’’ yields
and R2 = .64 accounting for approximately 64% of the variance.
Fig. 5.4 illustrates this result.
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Fig. 5.2. Minimization-based complexity vs. invariance-based structural complexity of the Boolean categories from six Boolean category families: 3(2), 3(3), 3(4), 4(2), 4(3),
and 4(4).
Applying the Spearman σ test, which measures the correlation
between the predicted order of the 41 category types and their
empirical order, yields an impressive −.80. In contrast, the
minimization-complexity hypothesis did not show as strong a
correlation, with a Spearman σ of −.60 for the 41 category types.
Notably, there are no free parameters in the CIM, which explains
our inclination to call the relationship between the CIM and
concept learnability amathematical lawof cognition. Of course, the
Booleanm-complexity model does not depend on free parameters
either. However, as documented, it is not as successful in predicting
degrees of learning difficulty for the 41 Boolean category types as
the CIM.
Moreover, the Boolean complexitymodel proposed by Feldman

(2000) does not account for what are known as ‘‘parity effects’’.
A Boolean category is in up parity if the number of its positive
examples is smaller than the number of its negative examples;
likewise, it is in down parity whenever the reverse is true. Clearly,
3(4) type categories (i.e., the SHJ types) have no parity. It turns
out that categories in up parity have a constant learnability
advantage over categories in down parity. This phenomenon had
been observed empirically by Haygood and Bourne (1965) in a
classic experiment involving rule-based classification.
For example, they discovered that disjunctive rules (Boolean
categories of type 2(3)) were more difficult to learn than
conjunctive rules (Boolean categories of type 2(1)). This finding
was consistent with a number of previous empirical findings, most
notably those of Hunt and Hovland (1960), Welles (1963), and
Conant and Trabasso (1964). Feldman (2000) tested the parity
phenomenon for an unprecedentedly large number of category
types. However, Feldman’s Boolean complexity model presented
in the same paper does not account for the phenomenon.
In general, the CIM predicts this learnability advantage. For

example, for a type 2(3) category, CIMpredicts a value of 1.54while
for a type 2(1) category it predicts a value of 1, making the 2(3)
type category more structurally complex and hence more difficult
to learn. This is consistent with the aforementioned findings. In
fact, for all 76 category types (35 in up parity, 35 in down parity,
and 6 with no parity) the CIM accounts for 42% of the variance and
correlates more significantly with the empirical data (Spearman
σ = −.69). This is higher than the predictive performance attained
by Feldman’s complexity model (Feldman, 2000) for only the 41
category types (35 in up parity and 6 with no parity).
In contrast, Feldman’s λT spectral decomposition model of

complexity (Feldman, 2006) discussed under section 3.5 accounts
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Fig. 5.3. Proportion correct for 41 category types studied by Feldman (2000)
plotted against strong Boolean complexity predictions. These include the 3(2), 3(3),
3(4), 4(2), 4(3), and 4(4) families. The center line indicates linear regression: R2 =
.42. The flanking curves define the 95% confidence interval.
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Fig. 5.4. Proportion correct for 41 category types studied by Feldman (2000)
plotted against invariance law predictions of the degree of learning difficulty. These
include the 3(2), 3(3), 3(4), 4(2), 4(3), and 4(4) families. The center line indicates
linear regression: R2 = .64. The flanking curves define the 95% confidence interval.

for approximately 50% of the variance in the data. Both the CIM and
theλT model are able to predict the SHJ learning difficulty ordering.
However, as already explained, the spectral decomposition model
depends on weights per level of decomposition to do its work
(i.e., for each K , the number of rules in a set of rules of degree K
is assigned a weight); on the other hand, the CIM in its basic form
does not depend on any kind of weights.
Moreover, Feldman (2006) attempted to fit Krusche’s ALCOVE

(1992) to the same data set. While ALCOVE does not have a
mechanism for dealing with parity (in fact, models like ALCOVE
are symmetric in respect to parity), it nevertheless predicts the
SHJ difficulty ordering. According to Feldman, ALCOVE yields an R2
of .21 for all 76 category types.
While the spectral model explains the degree of learning

difficulty in terms of the regularities inherent in Boolean categories
as measured by the sum of the weighted components of their
spectral decomposition, the CIM explains the same regularities
in terms of degrees of structural symmetry or invariance and
we believe that it does so in a way that intuitively suggests the
cognitive process underlying the computation. In this respect,
unlike Garner (1974), we believe that invariance or symmetry
offers a natural and direct way to measure the regularities in a
pattern.
Interestingly, both models rely on some type of discretization

of concepts found in the calculus: as Feldman (2006) pointed out,
the λT measure is analogous to a series expansion in analysis. On
the other hand, our invariance law is based on a more elaborate
mathematical framework involving concepts that are hybrids from
analysis, Boolean algebra, and discrete topology.
One interesting aspect of the CIM is that its reliance on

both categorical invariance and category size tacitly suggests
two distinct processes that may lie at the core of all of
cognition: namely, pattern detection and working memory. This
is most apparent when considering the parity phenomenon. More
specifically, we hypothesize that parity effects may be the result
of observers searching for invariances (perhaps using short-term
or working memory and selective attention resources) within
competing categories and settling for the one from which it
is easiest to extract invariances in working memory. This is
normally the smaller category unless the bigger category has a
comparatively much higher degree of invariance than the smaller.
However, this maxim works only up to a point: for even

when there is a higher degree of invariance in a competing
category, subjects probably opt to commit to long-term memory
the competing category that has only one member, thereby
bypassing the implicit analysis of invariance altogether. This
tradeoff between memory limitations and pattern perception
needs to be further researched empirically. However, a good first
theoretical step toward identifying it is to characterize the role
that both invariance and category size may be playing in concept
formation and this is what we have done thus far through our
characterization of structural complexity.
We could also, at the risk of introducing additional qualitative

assumptions, describe this relationship in terms of an exponential
functional of invariance. Doing so eliminates the need for
normalizing Φ(F) by adding the number one. Under such an
interpretation we get Definition 5.2. With this move, a conceptual
unity between our model and Shepard’s model of generalization
emerges. The twomodels have similar forms, but Shepard’s model
depends on a similarity metric between stimuli in ‘‘psychological
space’’ which determines the probability (or rate) of generalization
from a stimulus to different test stimuli, while our model depends
on an invariance metric in structural space for sets of stimuli
(i. e., categories) which determines the degree of structural
complexity of a categorical stimulus explicitly (and the rate of
correct classifications implicitly). This conceptual unity is another
strength of the CIM.

Definition 5.2. The degree of structural complexity Ψ (F) of a
Boolean category defined by the Boolean expression F and
belonging to the family D(p) is indirectly proportional to the
exponent of its degree of categorical invariance Φ(F) and directly
proportional to its cardinality |DI(F)| = p.

Ψ (F) = |DI(F)| × e−Φ(F) = pe−Φ(F).

This alternative definition of structural complexity performs
well with a Spearman σ of−.65 and an R2 = .58 for the 41 Boolean
category types. As usual, predictions from this exponential model
can be improved upon by adding parameters. Note that the ratio
between cardinality and invariance in both definitions reflects
the tradeoff between memory capacity and pattern perception
discussed above.
Thus, now we can offer a possible answer the following

question: why should minimization or compressibility of Boolean
rules be a meaningful measure of Boolean complexity in the
first place? Our answer is that Boolean rules are simply higher-
order explicit symbolic approximations of the implicit detection
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of invariances intrinsic to stimuli. Admittedly, our analysis above
has been limited to 41 Boolean category types in six families. This
seemed appropriate since these families are computationally, and
more importantly, cognitively tractable—as empirical studies have
shown.However, studying amuch larger number Boolean category
families will likely improve our understanding of the relationship
between these two very different ways of measuring complexity.

5.3. Generalization to non-human animals

Todd Gureckis (personal communication) has questioned
whether the CIM could successfully model Boolean concept
learning data obtained from non-human animals such as monkeys
or birds. For example, in one recent study by Smith, Minda, and
Washburn (2004), four Rhesus monkeys were trained for 36 days
to respond to a monitor displaying visual instantiations of the
SHJ category types using a joystick with fruit pellets as rewards.
Each solved all six SHJ problems in multiple orders. The resulting
difficulty orderingwas significantly different from that observed in
humans, with concepts associated with type II Boolean categories
appearing to be approximately as difficult to learn as concepts
associated with type VI Boolean categories for each of the four
monkeys.
By extending the CIM with the inclusion of dimensional bias

or saliency parameters δi ranging over real numbers (where
0 ≤ δi ≤ 1 and i is a positive integer representing the
particular dimension), we get the following expression which
makes structural complexity a function of the degree of invariance,
dimensional saliency, and cardinality:

Ψ (F) = |DI(F)| ×

 D∑
i=1

δi ·
∥∥∥∥∥ ∂̂F(x1 . . . xD)∂̂xi

∥∥∥∥∥
2
1/2 + 1

−1 .
For example, letting δ3 = 0 (and δ1 = δ2 = 1) decreases the
invariance contributed by the dimension that is represented by
the variable x3 (or z in the representation of the 3(4) category
types in Fig. 2.2 of Section 2) and predicts the order of learning
difficulty experienced by the monkeys in Smith et al. (2004). This
can be easily confirmed by examining the lexicographical order of
the logical manifolds corresponding to the SHJ category types (see
Fig. 3.7). Of course, depending on which dimension is discounted,
one can generate different orders.
The cognitive motivation behind the CIM extension given in

the above definition is that the invariance detection mechanism
of some non human animals may not be sufficiently developed to
handle more than two dimensions. If there is a high correlation
between the limitations of working memory and our ability to
detect invariances in categories, then perhaps the reasonwhy non-
human animals such as Rhesusmonkeys, and even children, do not
perform as well as adults is because they do not have the three or
four chunk capacity of working memory required to manipulate
three or four dimensions implicitly in psychological space.
Indeed, it may be that each dimension requires at least one

chunk of working memory capacity in order to be manipulable in
working memory. Moreover, it is plausible that Rhesus monkeys
are disregarding the one dimension that is most disruptive to
the overall invariance of the category. If proven correct, this
would seem to indicate that the perceptual and concept learning
mechanisms of some non-human animals satisfy some principle
of parsimony. In fact, it has been argued that other higher-
order cognitivemechanisms in non-humans animals (in particular,
deduction and similarity judgments) may also be regulated by
some principle of parsimony (Vigo, in press; Vigo & Allen, 2009).
6. Conclusion

In the introduction to this paper, we specified two clearly
distinct aims. The first was to develop a simple and natural
mathematical framework with which to precisely describe and
measure the degree of invariance inherent to Boolean categories:
these invariances were expected to account for fundamental
aspects of Boolean concept learning behavior. The general planwas
to translate topological notions of invariance into discrete logical
notions of invariance.
To do this, we introduced the notion of a logical manifold as

an ordered set of the L-norms of the partial derivatives of the
Boolean category (i.e., ameasure of the Boolean category gradient).
We then identified the invariance space L of a Boolean category
family D(p) as the logical manifolds of the category types in the
family. In addition, we proposed a measure of relative degrees of
invariance based on an Euclidean metric on the logical manifolds
of these category types. Combined, we call these ideas ‘‘logical
manifold theory’’. This is, as far as we know, the first time this type
of logico–analytic framework has been used to model cognition.
The second aim was to developed a theory of human concept

learning based on the idea that the subjective degree of learning
difficulty of a category is determined by an invariance-based
measure of the structural complexity of the categorical stimulus.
More specifically, we defined the structural complexity of a
categorical stimulus as being indirectly proportional to its intrinsic
degree of invariance and directly proportional to its cardinality or
size. The end result is that human concept learning difficulty is
ultimately dependent and best explained, not by complexity, but
by invariance principles.
It is interesting to compare this structural account with

exemplar accounts of concept learning (Medin & Schaffer, 1978;
Nosofsky, 1986). In these accounts, a novel stimulus is classified by
determining how similar it is to the stored exemplars of a category
and those of a contrasting category. In particular, in Nosofsky’s
GCM (1986) model of categorization, categorization decisions are
based on the similarity of novel stimuli to each of the exemplars in
each of the competing categories.
The ratio of the sum of these similarities is a good predictor

of the final classification outcome. Selective attention plays an
important role in this model as does long-term memory. In the
categorical invariance model, however, it is the low degree of
symmetry or invariance of the categorical stimulus, along with
the greater demands placed by such a stimulus on the agent’s
invariance detection capacity, that ultimately make a category
hard to learn and a category instance hard to classify.
In other words, the cognitive plausibility of our theory relied

on the idea that it may be the case that subjects implicitly
detect patterns (among instances of categories) via a higher-order
differentiating mechanism in respect to particular dimensions.
This interpretation is consistent with our modeling proposal that
the degrees of partial invariance intrinsic to a Boolean category
are revealed by its logical manifold. We then conjectured that two
aspects of the logical manifold of a Boolean category could be
used to determine an invariance order among category types. The
first is the maximal invariance value in the logical manifold of the
category type, the second the frequency of this value. This ordinal
characterization paved the way towards our quantitative measure
of invariance.
We used the invariance measure along with information about

the size of a category to build the CIM (concept invariance
model). The CIM was successful in predicting the SHJ ordering
as observed in Shepard et al. (1961) and Nosofsky et al. (1994).
More specifically, according to the CIM, categories of type 3(4)-
I are the easiest to learn since they contain the maximal amount
of invariance, while categories of type 3(4)-II are a more difficult.
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Categories of type 3(4)-III, 3(4)-IV, and 3(4)-V are of approximately
equal difficulty and all more difficult than categories of type 3(4)-
II. Finally, categories of type 3(4)-VI are the most difficult of all for
they lack the most invariance. In a nutshell, we can describe the
difficulty ordering predicted by the CIMby the following sequence:
I(1.66) < II(2) < [III(2.14)], IV(2.14),V(2.34)] < VI(4).
More importantly, the CIMwas able to predict the approximate

difficulty ordering for all 41 category types studied by Feldman
(2000) without the need for free parameters. In fact, the CIM was
able to account for approximately 64% of the variance (R2 = .64)
in the data. Category size alone only accounts for 27% (R2 = .27) of
the variance. Applying the Spearman σ test, which measures the
correlation between the predicted order of the 41 category types
and their empirical order, yields an impressive −.80. In contrast,
the minimization-complexity model did not show as strong a
correlation, with a Spearman σ of−.60 for the 41 category types.
Moreover, when considering all 76 category types (35 in down

parity, 35 in up parity, and 6 with no parity) studied by Feldman
(2000) the CIM accounted for 42% of the variance in the data.
This time, category size alone accounts for 24% of the variance
(R2 = .24). In contrast, the strong Boolean complexity account of
learning difficulty (based on Boolean minimization) accounts for
42% of the variance in the data for categories in up parity only
(the weak complexity model accounts for 45% of the variance),
while Feldman’s λT spectral decomposition model of complexity
accounts for about 50% of the variance using multiple weights.
We also discussed how themore elegant exponential version of

the CIM (Definition 5.2) is also effective and suggests a conceptual
unification between our invariance measure and Shepard’s model
of generalization. More specifically, if we construe invariance as a
higher-order contextual similarity measure, it is not unreasonable
to think that there may be a connection between a contextual
law of generalization and our notion of structural complexity. It
remains to be seen which of these two versions of the CIM will
provide a better fit to data from future empirical studies.
In addition, we showed how the CIM may be extended in

a simple and natural fashion (by adding a dimensional saliency
variable) in order to account for the learning difficulty ordering of
the SHJ category types as observed in Rhesusmonkeys (Smith et al.,
2004). This extension is far from arbitrary as it is motivated by the
limits ofworkingmemory in different types of non-human animals
and in small children. However, it introduces parameters into the
model.
Admittedly, the account of human concept learning put forth

above involves only categorical stimuli consisting of an arbitrary
number of binary-valued dimensions. However, one of the virtues
of the current mathematical framework is its flexibility: that is, in
principle, it can be extended in the direction of an arbitrary number
of multivalued dimensions by increasing the power of definability
of the Boolean algebra via an expansion of its carrier set. One of the
future research challenges for the current work is to develop such
an extension.
Finally, we hope that the modeling techniques and theory

proposed in this paper will stimulate further research in the fields
of conceptual behavior and concept learning. Also, that they will
encourage the utilization of invariance concepts as unificatory
principles in other areas of cognitive research. Such efforts can only
help lift cognitive science to the same level of systematicness and
rigor found in the physical sciences.
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Appendix

Proposition A.1.∣∣DI(F) ∩A0(̂∂xiF)
∣∣

|DI(F)|
=

∣∣FO ∩ FP
∣∣∣∣FO

∣∣ .

Proof. We show that DI(Fxi) ∩
[
A0(̂∂xiF) = A0(Fxi ⊕ Fx′i )

]
=

DI(Fxi)∩DI(Fx′i ) since by definition FO = DI(Fxi) and FP = DI(Fx′i ).
A0(Fxi ⊕ Fx′i ) = [A1(Fxi) ∩ A1(Fx′i )] ∪ [A0(Fxi) ∩ A0(Fx′i )]. But
A1(Fxi) = DI(Fxi) and A1(Fx′i ) = DI(Fx′i ). Thus, A0(Fxi ⊕ Fx′i ) =
[DI(Fxi) ∩DI(Fx′i )] ∪ [A0(Fxi) ∩A0(Fx′i )]. Then,

[[DI(Fxi) ∩DI(Fx′i )] ∪ [A0(Fxi) ∩A0(Fx′i )]] ∩DI(Fxi)

= [[DI(Fxi) ∩DI(Fx′i )] ∩DI(Fxi)]

∪[[A0(Fxi) ∩A0(Fx′i )] ∩DI(Fxi)].

But [[A0(Fxi)∩A0(Fx′i )]∩DI(Fxi)] = ∅, sinceDI(Fxi)∩A0(Fxi) = ∅.
Thus, [DI(Fxi) ∩DI(Fx′i )]. �
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