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A new non-parametric method for reducing the number of 

dimensions in binary and continuous data, and for measuring the 

complexity of binary and continuous datasets, is introduced. The 

method, named Structural Manifold Analysis (SMA), is based on 

“Generalized Invariance Structure Theory” [1-6], a theory that has 

been successful in characterizing and accurately predicting human 

concept learning and categorization performance. SMA is unique 

among data reduction and classification methods because it 

determines the degree of “diagnosticity” or classification potential 

of each of the dimensions in a multidimensional dataset up to a 

pre-specified discrimination resolution threshold. We compared 

SMA to five classical and recent dimensionality reductions methods 

using supervised and unsupervised classification techniques on 304 

actual and simulated datasets. Overall, SMA performed as well as 

or better than any of the five methods tested while providing 

significant advantages over each. 

Keywords— dimensionality reduction; human 

classification; machine classification; machine learning 

I. INTRODUCTION  

Data sets in domains such as machine learning, data mining 
and numerical analysis have high dimensional spaces with tens, 
hundreds or thousands of dimensions. When analyzing high 
dimensional data various problems, issues that do not arise in 
the three-dimensional physical space, occur. Many 
applications, such as classification, can require high 
dimensional data for reliable results. But as the dimensionality 
increases the volume of the data space increases but the data 
itself becomes sparse. In addition, many applications, such as 
classification, depend on detecting areas where objects with 
similar properties group together; but with high dimensional 
space general data organization strategies are not always 
efficient. The problems occur because the data becomes sparse 
as the dimensionality increases and efficiency of common data 
organization techniques decreases. 

The problems with analysis of high dimensional data can 
occur because the algorithms do not scale well to high 
dimensional data. Solutions include either changing the 
algorithm or preprocessing data into a lower dimensional 
space. Various dimensionality reduction techniques have been 

proposed in literature but these techniques can generally be 
classified as either feature extraction or feature selection 
techniques. Note that in this work the terms features and 
dimensions are used interchangeably and mean the same unless 
specified otherwise. Feature extraction techniques assume that 
the data of interest lie on an embedded manifold within the 
higher dimensional space and transform the original set of 
features into a reduced set of features. The transformation can 
either be linear or non-linear and involves combining existing 
features to create new features. Principal component analysis 
(PCA) [7], nonlinear PCA (NLPCA) [8], kernel PCA (KPCA) 
[9], and singular value decomposition (SVD) [10] are some of 
the approaches to feature extraction. Unlike feature extraction 
techniques the feature selection techniques try to select a subset 
of the original features and are widely used in pattern 
recognition tasks to identify the characteristic features of a 
given dataset. Minimum-redundancy-maximum-relevance 
(mRMR) [11] is an example of feature selection technique. The 
best subset of features for optimal characterization, minimum 
classification error, is always obtained by using an exhaustive 
search, but it is computationally intensive and is not always 
feasible. 

II. A THEORY OF HUMAN CLASSIFICATION PERFORMANCE 

Generalized Invariance Structure Theory (GIST) is a 

mathematical theory of human concept learning that has been 

successful in characterizing and in making accurate 

predictions with respect to human categorization/classification 

performance [1-6]. The concept learning law at the core of 

GIST, with either a single scaling parameter or without 

parameters, accounts for nearly all of the variance in the data 

from several large scale studies on human classification 

performance [2, 5, 6]. The core idea underlying GIST is that 

humans detect atomic invariance patterns (named “categorical 

invariants”) in sets of objects (i.e., categorical stimuli). The 

human conceptual system then computes the proportions of 

detected categorical invariants (with respect to each 

dimension) to the number of objects in the categorical 

stimulus. This structural information is then used to determine 



the degree of diagnosticity (on an inverse scale) of each 

relevant dimension of the categorical stimulus – or, in other 

words, the extent to which each of the dimensions comprising 

any categorical stimulus is able to predict object membership 

in the categorical stimulus. This information is then used by 

observers to form classification rules by discarding redundant 

dimensions and keeping as many as possible (as determined 

by processing limits) of the diagnostic ones. The degree of 

perceived difficulty or subjective complexity of a categorical 

stimulus is then characterized by the law of invariance (also 

known as the Generalized Invariance Structure Theory Model 

or GISTM) which states that the degree of learning difficulty 

of a set of objects defined dimensionally is directly 

proportional to its cardinality and inversely proportional to the 

exponent of its overall degree of invariance [2, 5, 6]. We use 

these ideas from GIST to develop a new and effective method 

for multivariate data analysis that conforms to human 

intuitions. We also aim to determine how effective a theory 

that captures accurately human classification performance can 

capture the structure of multidimensional datasets in terms of 

a reduced set of dimensions. 

III. CATEGORICAL INVARIANCE 

The formal description of the process specified in GIST is 

based on a notion referred to as categorical invariance, and on 

several other related measures, first introduced in [1-6]. Here 

we mention only three. The first measure, referred to as 

“partial categorical invariance”, is a measure of the degree of 

local or partial relational homogeneity of a dimensionally-

defined set of objects with respect to a particular dimension. 

The second measure, referred to as “degree of categorical 

invariance”, is a measure of the overall or global degree of 

relational homogeneity of a dimensionally-defined set of 

objects with respect to all of its relevant dimensions. The third 

measure is a measure of the perceived structural complexity of 

a dimensionally-defined set of objects based on its cardinality 

(i.e., its size) and its degree of categorical invariance. The 

strength of these measures stems from their ability to apply to 

both binary and continuous multidimensional data.  

Structural Manifold Analysis (SMA) consists of the 

application of these measures from GIST (and a dimension 

selection heuristic introduced in section V) on multivariate 

data sets and not on the categorical stimuli they were intended 

for. Indeed, in principle, the representation of a data sets in 

terms of a matrix of variables is no different to the 

representation of a categorical stimulus in GIST in terms of a 

matrix of dimensional values; thus, GIST generalizes 

seamlessly to both cases. In section VI, we compare SMA to 

five classic and recent dimensionality reduction methods and 

test these using five prominent classification techniques.  

To understand how categorical invariance measures the 

homogeneity of datasets, we first perturbed the dataset I in 

Table I with respect to the binary dimension of protein-content 

(the third dimension). We do this by assigning the opposite 

protein-content value to each of the four food brands in the 

set. This yields the perturbed dataset 

 (1,1,0,0),  (1,1,1,1),  (1,1,1,0),  (1,1,0,1) which indicates a 

transformation of the dataset {(1,1,1,0), (1,1,0,1), (1,1,0,0), 

(1,1,1,1)} along its third dimension as shown in Table III. 

More specifically, all ones become zeros and all zeros become 

ones for the third value of each vector representing a data 

point in the set.  

In general, let M be a multidimensional data set and 

let (M)
i

T  stand for the result of applying such a transformation 

i
T  on the multidimensional dataset M along its i-th dimension. 

After the transformation has been applied, we compare the 

original data to the perturbed data and recognize they have 

four points in common with respect to the protein-content 

dimension. Thus, four out of the four data points remain the 

same. This ratio is a measure of the partial homogeneity of the 

data with respect to the dimension of protein-content in our 

example above. The ratio can be written in general terms as a 

lambda operator on M: 

 
M (M)

(M)
M

i

i

T
  (1) 

In (1), if M is a binary dataset of D dimensions ( 1)D  , 

then, for any dimension i (1 )i D  , the transformation iT  on 

M is defined as follows:  

1 1(M) {( , , , , ) ( , , , , ) M}i i D i DT x x x x x x  where 

1ix    if 0ix   and 0ix  
 
if 1ix  . Furthermore, 

M (M)
i

T  stands for the number of points that the 

transformed dataset M has in common with M with respect to 

the transformation
i

T . Doing this for each of the dimensions, 

all of the local (partial) homogeneities of the dataset are 

generated. Table III illustrates this transformative process for 

each dimension D1 through D4 on the first and second 

datasets of four food brands (i.e., Data I and Data II). It also 

shows the final set of points that remain the same in the data 

after their transformation. Note that compound 

transformations (i.e., involving 2 or more dimensions) are 

possible and were considered by the author of GIST when it 

was first developed. The result was that, from a cognitive 

standpoint, one gained little to nothing in terms of accounting 

for human classification data. In addition, the theory and its 

underlying models are not nearly as parsimonious, becoming 

instead post-hoc and arbitrary in character. Nevertheless, 

strictly for the purpose of data analysis, we acknowledge that 

this type of expanded analysis may merit further investigation 

in future work.  

Now that we have explained the nature of categorical 

invariance, we are prepared to define the logical manifold 

operator   on a multivariate (i.e., multidimensional) dataset 

M (where 1D   is the number of dimensions in M) as 

follows:  

 
1 2M (M) M (M) M (M)

, , ,
M M M

(M) DT T T   
   

 
 (2) 



TABLE I.  DATA SET I WITH FOUR DIMENSIONS 

Brand Fat Sugar Protein Fiber 

A 1 1 1 0 

B 1 1 0 1 

C 1 1 0 0 
D 1 1 1 1 

TABLE II.  DATA SET II WITH FOUR DIMENSIONS 

Brand Fat Sugar Protein Fiber 

E 0 1 1 1 
F 0 0 1 1 

G 0 0 0 0 

H 1 0 1 1 

TABLE III.  INVARIANCE OF MULTIDIMENSIONAL DATA OF SETS I AND 

II IN TABLES I AND II RESPECTIVELY IN RESPECT TO 4 DIMENSIONS 

 Data I Transformed 

Data I 

Set Intersection 

D1 {1110, 1101, 

1100, 1111} 

{0110, 0101, 0100, 

0111} 
  

D2 {1110, 1101, 

1100, 1111} 

{1010, 1001, 1000, 

1011} 
  

D3 {1110, 1101, 

1100, 1111} 

{1100, 1111, 1110, 

1101} 

{1100, 1111, 

1110, 1101} 

D4 {1110, 1101, 
1100, 1111} 

{1111, 1100, 1101, 
1110} 

{1111, 1100, 
1101, 1110} 

 

 Data II Transformed Data 

II 

Set 

Intersection 

D1 {0111, 0011, 0000, 
1011} 

{1111, 1011, 1000, 
0011} 

{1011, 
0011} 

D2 {0111, 0011, 0000, 
1011} 

{0011, 0111, 0100, 
1111} 

{0011,0111} 

D3 {0111, 0011, 0000, 

1011} 

{0101, 0001, 0010, 

1001} 
  

D4 {0111, 0011, 0000, 

1011} 

{0110, 0010, 0001, 

1010} 
  

 

 

The vector of the local homogeneities generated by the   

operator is referred to in GIST as the logical manifold of the 

set of points M. Accordingly, the degrees of global 

homogeneity of any multidimensional dataset may then be 

measured by computing the Euclidean distance between its 

logical manifold and the 0 = (0,…,0) logical manifold of the 

same dimensionality. The 0 manifold represents total absence 

of invariance with respect to each dimension of a multivariate 

dataset. In other words, all the local homogeneities of a 

multidimensional dataset with a 0 logical manifold are equal 

to 0 (a situation where all the dimensions are fully diagnostic 

or non-reducible or for which there are no dimensional 

redundancies). Thus, the 0 logical manifold is a baseline or 

lower bound for the degree of global invariance of the set of 

data points. The distance from this zero point in “dataset 

space” defines the relative degree of overall invariance or 

homogeneity  of any multivariate dataset M as shown in (3). 

Simply stated,  is a measure of the compressibility of M. 

Note that this equation is based on the Euclidean distance 

measure but it can be generalized to the Minkowski distance 

measure as done in [2, 5, 6] and in the next section. 
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  (3) 

IV. STRUCTURAL MANIFOLDS AND DATA COMPLEXITY 

One of the main accomplishments of GIST is its 

generalization from the notion of a logical manifold to a 

structural manifold. The latter can handle continuous and 

binary dimensions. To recognize the role that similarity plays 

in the determination of the degree of local relative 

homogeneity of a multidimensional dataset we turn to the 

concept of symmetry. For example, consider the partial 

symmetry shown in Fig. 1 between two 3-dimensional data 

points from a 3-dimensional dataset. With respect to the first 

dimension (i.e., when the first dimension is disregarded) both 

data points are identical. This idea is referred to in GIST as the 

invariance-similarity principle and is used to develop a 

general theory of conceptual behavior. Here, we shall use it to 

generalize the logical manifold operator given in (1) so that it 

applies to both binary and continuous domains. Under such 

generalization, the logical manifold operator will be called the 

structural manifold operator; accordingly, the manifolds 

generated by the structural manifold operator shall be referred 

to as structural manifolds. The core idea is that the degree of 

redundancy and, hence, (on an inverse scale) diagnosticity of a 

dimension is revealed by how much its temporary removal or 

suppression has on the homogeneity of the dataset as a whole. 

In GIST, this suppression of a dimension is referred to as 

binding the dimension. Next, we shall introduce a similarity 

measure that formalizes this basic idea. 

In so doing, we shall employee the following additional 

notation: let X be a multidimensional dataset and X stand for 

the cardinality (i.e., the number of elements) of X. Let the 

points in X be represented by the vectors 1 2, , , nx x x  (where 

Xn  ) and let the vector 
1, , )j Dx xx = ( be the j-th D-

dimensional data point in X (where D is the number of 

dimensions or variables of the dataset). Furthermore, let 
jix  be 

the value of the i-th dimension of the j-th point in X. We shall 

assume throughout our discussion that all dimensional values 

are real numbers greater than or equal to zero. Finally, let 

( , )j kS x x stand for the similarity of data point Xj x
 
to data 

point Xk x .  

Our aim in this section is to introduce a generalized 

version of the structural manifold operator of (1) using the 

invariance-similarity principle. To do this, we use the 

generalized Euclidean distance operator 
r  (a.k.a. Minkowski 



distance) between two data points , Xj k x x  defined as 

follows: 

101  001   
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(identical with 

respect to D1) 
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Fig. 1. Equivalence of Categorical Invariance (with respect to D1) to the 

Partial Similarity between Two Points 
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Furthermore, we introduce a new kind of distance operator 

termed the partial distance operator
 

 d

r : 
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x x x x

 (5) 

Equation (5) simply takes the sum of the differences 

between two data points in X across each of their dimensional 

values except the value corresponding to the “bound” d-th 

dimension (1 )d D  . In other words, it computes the partial 

distance between any two data points , X
j k

x x , by excluding 

dimension d in the computation of the Minkowski generalized 

metric.  For example, for a dataset consisting of four points, 

we can conveniently represent these partial pairwise distances 

with respect to a dimension d with the following partial 

distances matrix: 

 

       

       

       

       

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
(X)

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

d d d d

d d d d

d d d d

d d d d

r r r r

r r r r

r

d r r r r

r r r r

   

   


   

   

x x x x x x x x

x x x x x x x x
D

x x x x x x x x

x x x x x x x x


 
 
 
 
 
  

 
(6) 

And more generally as: 
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x x x x

D

x x x x

 (7) 

Similarly, we can define the partial similarity between two 

data points as is done in multidimensional scaling theory [12] 

as a monotonically decreasing function F of the partial 

distance between the two data points. 

  [ ] ( , ),( ) ( )d j k

r

d j kS F  x xx x  (8) 

The simplest non-trivial such function is the additive 

inverse of the standardized partial distance 

measure   ( , )d j k

r x x using the city block metric (i.e., when r=1) 

as shown in (9). The standardization is achieved by a linear 

transformation into the interval [0, 1] as seen in (10) where the 

max and min of a matrix are respectively its largest and 

smallest element and the    (X) (X)( ( )r r

d d
D Dmax min  for any 

d and r.  

  

1

[ ] ( , ))(,( ) 1 d j kd j kS    x xx x  (9) 

                             

  

   

   

1 1

1

1 1

( , )
( , ))

(X)
(

(X) (X)

( )

( ) ( )

d j k

d j k

d

d d










x x
x x

D

D D

min

max min
 (10) 

      Although other proven measures of similarity as functions 

of distance may be used, such as the exponential function 

  ( , )r
j kd

e
 x x

, to simplify our explanation and analysis, the 

similarity measure in (9) will do for the remainder of this 

article. Either measure may be used depending on whether the 

data is human subject data (exponential) or objective data 

(simple inverse). Now we can construct the matrix of the 

pairwise partial similarities in a dimensional dataset. Note that 

the example given in (11) below consists of a 4 dimensional 

dataset with four data points as those shown in Table III. By 

convention, we have excluded reflexive or self-similarities in 

the diagonal of the matrix. However, we include symmetric 

comparisons since they are at the heart of the operator 

introduced in (5) (the importance of including symmetric 

comparisons can be seen Fig. 1), and our goal is to be faithful 

to this invariance measure. 
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x x x x x x
S

x x x x x x

x x x x x x

 
(11) 

The values on the diagonal of the above matrix are equal to 

one (since the partial distance of any stimulus to itself is zero) 

but these do not play a role in estimating the overall local 

homogeneity of the dataset X. Adding the values of the 

similarity matrix that correspond to differences within a 

chosen distance resolution threshold for each dimension d  

we can get the following expression which is functionally 

analogous to the local homogeneity operator given in (5) (for 

any pair of objects ( , )j kx x where , Xj k x x , j k , and  

 , 1,2,..., Xj k ): 

 
 

 
 0 ( , )

,( )

(X)
X

j k

r
j k dd

d

d

S

H
 




x x

x x

 (12) 



The equation above defines the local homogeneity [ ]dH of 

a D-dimensional dataset X with respect to dimension d. 

[ ](X)dH  is the ratio between: 1) the sum of the similarities in 

the matrix   
X

d
S  (for a particular bound dimension d) that 

correspond to distances in the [0, ]d  distance resolution 

interval, and 2) the number of items in the dataset X. When 

the partial distances are close to zero, the points are, for all 

intent and purpose, treated as identical. Equation 13 below 

shows the matrix used to calculate the local homogeneity 

(with respect to dimension 3) of the dataset 

 A 1110,  1101,  1100,  1111  (this is the first dataset 

depicted in Table I) when we let 1 0   and r=1.  

 

     

     

     

     

1 2 1 3 1 43 3 3

2 1 2 3 2 43 3 3

3

3 1 3 2 3 43 3 3

4 1 4 2 4 33 3 3
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( , ) ( , ) ( , )
(A)
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1 0 0

0 1 0
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x x x x x x

x x x x x x
S

x x x x x x

x x x x x x  
(13) 

Note that the computed matrix in (13) contains 4 ones that 

represent four identical pairs of data points. Applying (12) we 

get 
 

 
 

 
1
1

1

0 ( , ) 0

1

,( )
1 1 1 1

(X) 1
X 4

j k

j k

S

H
    

  


x x

x x

 (14) 

Lastly, we define the generalized structural manifold with 

(15). This construct is analogous to the one defined in (2), 

except that it applies to both binary and continuous 

dimensions and is equipped with a distance resolution 

threshold. 

       1 2
(X) (X), (X),..., (X)

d d d D
H H H

  
   (15) 

We can also specify the particular partial or local homogeneity 

of X (comprising the structural manifold) as seen in the 

equation below.  

 
 

 0 ( , )

,( )

(X)
X

j k

r
j k dd

d

d

d

S



 

 


x x

x x

 (16) 

  With (16) (when r=1 and 
0d 

 for all d) we can compute 

the partial homogeneities of the multidimensional datasets 

from Table III and get results consistent with those shown in 

the third column of the table. Furthermore, using our new 

formulation of the generalized structural manifold operator, 

we can compute the structural complexity for any multivariate 

dataset X defined over 1D   dimensions and for any pair of 

objects 
( , )j kx x

(such that 
, Xj k x x

, 
j k

,  , 1, 2, ..., Xj k  , 

using Vigo’s law of invariance [2, 5, 6] as in (17). Although 

this exponential function of invariance is more accurate from a 

human performance perspective, the identity +1 function (18) 

achieves good approximations and is computationally more 

parsimonious. 
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A Matlab program (ver. 7) to compute the structural 

manifold and structural complexity of multidimensional 

dataset is available at http://www.scopelab.net/programs.htm. 

V. SELECTING DIMENSIONS FROM STRUCTURAL MANIFOLDS 

We extracted the two structural manifolds along the lines 

of the dependent variable values (e.g., whether a tumor is 

cancerous or not). However, in general this is not necessary 

and one may extract the structural manifold of an 

unpartitioned dataset. We apply a heuristic procedure on the 

components of each structural manifold in order to eliminate 

the most redundant dimensions.  

The elements of each of the two structural manifolds (with 

their dimensional labels as shown in TABLE III) are ordered 

from smallest to largest and, whenever there are identical 

values in the set, these are ordered in ascending order of their 

dimensional labels: for example, suppose that the same degree 

of local homogeneity .5 is associated with dimensions D3, D1, 

and D4, then these three labels are arranged in ascending 

dimensional order within the two structural manifolds: D1(.5), 

D3(.5), D4(.5). The relatively less diagnostic dimensions from 

the two structural manifolds are removed to produce two 

sparse sets of dimensions. To do this, we delete dimensions 

with local homogeneity greater than the median1 of the values 

in each of the two structural manifolds. One of these sparse 

sets will be the “base” set and the other set is referred to as the 

“target” set. The base set is the set containing the smallest 

value (i.e., the most diagnostic dimension) among all the 

values in the two sets. If the smallest value is shared by both 

sets, then the set with the next smallest value is the base set, 

and so on. On the other hand, if the sets are identical, then 

either can serve as a base set.  

We decide on the number of desired diagnostic 

dimensions. Next we determine whether the first dimensional 

label of the base set is in the target set. If so, then it is the first 

candidate diagnostic dimension.  In either case, we proceed to 

1Although we employ the median in our heuristic, one can use a more 
aggressive rule of thumb based on the first quartile – or even smaller cutoffs 

– depending on the desired level of reduction by the user and on whether the 

number of dimensions or characteristics involved are large. 



the next dimensional label in the base set and, once again, 

determine membership in the target set. This search procedure 

is repeated until the desired number of diagnostic dimensions 

are obtained. If this result is an empty set, no diagnostic 

reduction is possible. 

If the resultant dimensional reduction is not as low as 

desired, we repeat the process using a higher discrimination 

level when computing the structural manifolds. Note that we 

begin by setting it to 0, this provides the most stringent test for 

the presence of invariance structure in the data set but assumes 

identity of points which is not often a realistic psychological 

assumption. If this does not work, increase the value to .05 

and .1. The use of .05 value increment is more realistic and is 

based on the psychologically meaningfully idea that humans 

can discriminate values in a 1-20 subjective judgment scale. 

This value has worked well for us in terms of relaxing the 

similarity criterion and henceforth finding hidden invariance 

structure in the data without relaxing it too much. Non-

psychological arguments for setting tau to different values will 

be explored in future research.   In general, the discrimination 

level should not be higher than necessary in order to determine 

the desired number of diagnostic dimensions. Here is the 

pseudo-code for this heuristic procedure: 

 

Let SM_1 and SM_2 be the structural manifolds and TS the target set. 

1. Sort SM_1 and SM_2 

    SM_1 = sort(SM_1, ‘ascend’);  

    SM_2 = sort(SM_2, ‘ascend’);   

2. If SM_1(i) > median(SM_1) then SM_1(i) = []; 

   Similarly if SM_2(i) > median(SM_2) then SM_2(i) = []; 

3. Structural manifold with minimum value not shared with other is the 

Base Set (BS) 

4. Set number of diagnostic dimensions = N; 

5. Diagnostic Dimensions, DD = unsorted_intersect(BS , TS ); 

6. IF DD = {}, no reduction possible. Go to (8). 

7. IF length(DD) < N, repeat (1) to (6) using lower discrimination level  

 ELSE DD(N+1:end) = []; 

8. STOP 

VI. EXPERIMENTS 

We tested our approach on three datasets and a variety of 
simulated datasets based on these three datasets. For these 
datasets we compare performance of SMA with three feature 
reduction (PCA, NLPCA and KPCA) and two feature selection 
(mRMR and exhaustive) techniques. The performance of 
dimensionality reduction techniques was tested using three 
classification and two clustering techniques. Linear 
discriminant analysis (LDA) [13], k-nearest neighbor (KNN) 
[14] and support vector machine (SVM) [9] are the 
classification techniques used while k-means [13] and 
hierarchical [13] are the clustering techniques used. LDA was 
performed assuming prior probabilities were uniformly 
distributed and a pooled covariance matrix was estimated from 
the training data. KNN classifier used Euclidean distance and 
samples were assigned to the class of the majority of the k 
nearest neighbors, where k=1. SVM was implemented using 

sequential minimum optimization (SMO) algorithm with linear 
kernel, soft margin C=1 and 5% of variables allowed to violate 
Karush-Kuhn-Tucker (KKT) conditions. K-means and 
hierarchical clustering used squared Euclidean and Euclidean 
distance measures respectively with number of clusters set 
equal to two, the number of classes in test data. K-means 
clustering was repeated five times using new initial cluster 
centroid positions and the solution with the lowest within-
cluster sums of point-to-centroid distances was used. 
Hierarchical clustering used the complete-linkage 
agglomerative approach.  

In sub-section A we provide a brief introduction of the 
datasets and in sub-section B we compare SMA against the 
five dimensionality reduction techniques mentioned above. The 
results show the advantages of our SMA approach over the 
other approaches. 

A. Datasets 

Wisconsin Diagnostic Breast Cancer (WDBC) [15], 1984 
United States Congressional Voting Records (CVRD) [15] and 
Alzheimer’s [16] were the three data sets used to compare 
performance of SMA against the five other dimensionality 
reduction techniques. WDBC dataset consists of 569 patient 
samples, with 357 patients diagnosed benign and 212 
diagnosed malignant. The actual WDBC dataset consists of 10 
real-valued features with the mean, standard error, and "worst" 
or largest (mean of the three largest values) of these features 
computed for each image, resulting in 30 features. In this work 
only the mean values were used, hence the dataset used only 
had 10 dimensions. 

The original CVRD dataset has 435 samples, classified as 
either democrat (267 samples) or republican (168 samples), 
with 16 dimensions representing 16 key votes identified by 
Congressional Quarterly Almanac (QOA). Since the original 
dataset had missing values we discarded instances that had any 
missing attribute (dimension) and ended with 232 instances 
divided as follows – 108 Republicans and 124 Democrats. The 
third dataset is the memory test database on Alzheimer’s and 
normal patients with 6 real-valued dimensions and available 
from the R project and is part of the Independent Factor 
Analysis (IFA) package. We use a subset of the data set that 
has 31 instances divided into two classes: Alzheimer’s (15) and 
Normal (16). 

From the CVRD dataset we generated 30 simulated 
datasets with the same number of instances using the same 
range of values found in their actual counterparts. The binary 
values for each dimensional variable were sampled at random 
using the random number generator in Excel 2010. For the 
WDBC and Alzheimer’s datasets we simulated 120 datasets by 
sampling each dimensional variable from a Gaussian (30 
datasets), exponential (30 datasets), and uniform distribution 
(30 datasets). A fourth type of dataset was simulated by 
sampling from all three distributions at random per 
dimensional variable (30 datasets). In short, we tested a total of 
273 datasets (31 with dichotomous dimensions and 242 with 
continuous dimensions) using SMA and the following four 
aforementioned classification methods. Table IV illustrates the 



possible parings that we tested and three of their basic key 
attributes. 

B. Results 

Applying SMA to the 273 datasets at a resolution threshold 

value of .05d   for all dimensions d using the exponential 

distance function 
   ,r

j kd x x
e


, SMA identified the three most 

diagnostic combination of dimensions for each dataset. We 
compared these results to the three best dimensions as selected 
by the Exhaustive, PCA, NLPCA, KPCA, and mRMR 
methods. The performance of the 30 possible pairs (6x5=30) of 
dimensionality-reduction and classification techniques, 
including SMA, were compared in terms of the number of 
classification errors that each pair yielded on the three 
dimensions identified by each reduction method.  Because the 
supervised classifications methods required training sets, we 
used the following schema to select these. First, 70% of the 
data points, evenly distributed among the two subcategories of 
the data set in question, were used for training, and the 
remaining 30% were used for testing in classification tasks. 
Similarly, the clustering tasks were performed using 30% of 
the data points evenly distributed between both categories. This 
sub-sampling procedure was repeated 50 times for each dataset 
and the resulting error rates were averaged. 

Each dimensionality reduction method was rated on the 
basis of the percentage of times that it yielded a higher or equal 
(within .05%) error rate in its best pairing possible when 
compared to all the 30 pairings. These results are shown in 
figures 2 and 3, where Fig. 2 illustrates the performance 
measure on the “actual” or original sets and Fig. 3 illustrates 
the performance measure with respect to the simulated sets. 
Note that figures 2 and 3 show only the results of the pairing of 
dimensionality reduction and classification/clustering 
technique that combined gives the highest accuracy. The actual 
values are shown in Table V, for actual datasets, and Table VI, 
for simulated datasets. 

From these graphs, it is clear that the most effective SMA 
pairing outperformed nearly all possible pairings of reduction 
and classification techniques. Most notable among these were 
pairings involving KPCA, NLPCA, and PCA across all three 
types of actual datasets as illustrated in Fig. 2. On average, the 
best performing combinations were the paring of SMA and 
LDA (1.1%) for all three actual datasets.    

On the simulated datasets, SMA outperformed or equaled 
all thirty pairings when applied to CVRD and Alzheimer’s 
data. On average, the best performing combinations were the 
parings of SMA and LDA (.088%) and SMA with SVM 
(.087%). On the simulated cancer datasets (WDBC), SMA 
only outperformed KPCA and NLPCA.  However, as can be 
seen in Fig. 3, the performance differences between the other 
two methods (PCA and mRMR) on the simulated cancer 
datasets drawn from different distributions were small. Closer 
inspection of Table VII shows that SMA does about as well as 
mRMR on the simulated cancer data as well. In short, SMA 
coupled with a suitable classification method, outperforms 
every dimensionality reduction and classification pairing as 
tested on each of the actual datasets.  Moreover, it outperforms  

TABLE IV.  TESTED REDUCTION AND CLASSIFICATION METHODS 

Reduction 

Method 

Strongly-

Supervised 

Weakly-

Supervised 
Parametric 

Reduction Method 

Exhaustivea
 NO NO NO 

PCA NO NO NO 

Non-linear 
PCA 

NO NO NO 

Kernel PCA NO NO NO 

mRMR NO YES NO 

SMA NO YES NO 

Classification Method 

LDA YES YES YES 

KNN YES YES NO 

SVM YES YES YES 

K-means NO NO NO 

Hierarchical NO NO NO 

a. The term “exhaustive” refers to the brute force process of testing every possible combination of three 
dimensions from the total set of dimensions. 

or equals, on average, nearly every pairing with respect to all 
the simulated datasets. 

VII. CONCLUSION 

We utilized GIST, a well-studied and accurate theory of 

human classification behavior, to analyze multivariate 

datasets. With the addition of a simple heuristic, we called the 

approach SMA. We then compared SMA to well-known and 

state of the art non-parametric approaches to feature selection. 

In turn, their performance was tested using the following 

classification and clustering methods: linear discriminant 

analysis, k-nearest neighbor, support vector machine, K-

means and hierarchical clustering. In addition to being 

parsimonious and intuitive, the overall performance of SMA 

was as good as or better than the aforementioned combined 

methods. As an added bonus, SMA provides an integrated 

measure of data complexity. Finally, SMA is non-parametric 

and non-probabilistic and, therefore, not susceptible to the 

limitations of either condition. 

 

Fig. 2. Summary of Performance for each Reduction Method with Respect to 

the Average Accuracy Rates of All Three Actual Datasets Tested. 



TABLE V.  PERFORMANCE ACCURACY ON ACTUAL DATASETS 

Dataset 
Exhaust

ive 
PCA 

NL 

PCA 

K 

PCA 

m 

RMR 
SMA 

Alzheimer’s 1 0.638 0.863 0.063 0.938 1 

WDBC 1 0.95 0.838 0.45 0.975 0.988 

CVRD 0.963 0.45 0.525 0.35 0.95 0.963 

Average 0.988 0.679 0.742 0.288 0.954 0.983 

    

 

Fig. 3. Summary of Performance for each Reduction Method with Respect to 

the Average Accuracy Rates of All the Simulated Datasets Tested. 

TABLE VI.  PERFORMANCE ACCURACY ON SIMULATED DATASETS 

Dataset 
Exhaust

ive 
PCA 

NL 

PCA 

K 

PCA 

m 

RMR 
SMA 

Alzheimer’s 1 1 1 0.138 1 1 

WDBC 0.938 0.775 0.538 0.213 0.763 0.625 

CVRD 1 1 1 1 1 1 

Average 0.979 0.925 0.846 0.45 0.921 0.858 

TABLE VII.  PERFORMANCE ERROR ON WDBC DATASET 

 LDA KNN SVM K-means Hierarchical 

Exhaustive 1.11 2.32 0.74 3.68 8.88 

PCA 2.74 2.92 2.61 6.34 10.37 

NLPCA 3.06 6.42 4.97 6.31 9.90 

KPCA 14.80 3.34 14.97 14.87 14.88 

mRMR 1.88 6.46 1.40 6.37 9.83 

SMA 2.10 6.42 1.66 6.35 9.80 
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